2023年圓錐的體積教案(優(yōu)秀17篇)

字號:

    教案能夠幫助教師提前預(yù)測學(xué)生可能遇到的問題,做好備課準備。教案的編寫需要綜合考慮教師的教學(xué)能力和學(xué)生的學(xué)習(xí)特點,以提高教學(xué)的適應(yīng)性。以下是教育界一些專家學(xué)者提供的優(yōu)秀教案范本,供大家共享。
    圓錐的體積教案篇一
    重點難點。
    教學(xué)過程。
    一、板書課題。
    師:同學(xué)們,今天我們來學(xué)習(xí)“圓錐的體積”(板書課題)。
    二、出示目標(biāo)。
    理解并掌握圓錐的體積計算公式,并能運用公式解決實際問題。
    三、自學(xué)指導(dǎo)。
    認真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的體積計算方法,并將例3補充完整。想:
    2、圓錐的體積計算公式是什么?用字母如何表示?
    5分鐘后,比誰能正確地回答思考題并能做對檢測題!
    檢測題。
    完成課本第34頁“做一做”第1、2題。
    小組合作,校正答案。
    后教。
    口答。
    小組內(nèi)互相說。
    當(dāng)堂訓(xùn)練。
    1、必做題:
    課本第35頁第5、6、7題。(做在作業(yè)本上)。
    2、選做題:
    有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數(shù)保留兩位小數(shù))。
    圓錐的體積教案篇二
    教學(xué)內(nèi)容:
    教科書第20~21頁例5及相應(yīng)的試一試,練一練和練習(xí)四的第1~3題。
    教學(xué)目標(biāo):
    1.組織學(xué)生參與實驗,從而推導(dǎo)出圓錐體積的計算公式。
    2.會運用圓錐的體積計算公式計算圓錐的體積。
    3.培養(yǎng)學(xué)生觀察、比較、分析、綜合的能力以及初步的空間觀念。
    4.以小組形式參與學(xué)習(xí)過程,培養(yǎng)學(xué)生的合作意識。
    5.滲透轉(zhuǎn)化的數(shù)學(xué)思想。
    教學(xué)重點:
    理解和掌握圓錐體積的計算公式。
    教學(xué)難點:
    理解圓柱和圓錐等底等高時體積間的倍數(shù)關(guān)系。
    教學(xué)資源:
    等底等高的圓柱和圓錐容器一套,一些沙或米等。
    教學(xué)過程:
    一、聯(lián)系舊知,設(shè)疑激趣,導(dǎo)入新課。
    1.我們已經(jīng)知道了哪些立體圖形體積的求法?(學(xué)生回答時老師出示相應(yīng)的教具---長方體,正方體圓柱體,然后板書相應(yīng)的計算公式。)。
    2.我們是用什么方法推出圓柱體積的計算公式的?(是把圓柱體轉(zhuǎn)化為長方體來推導(dǎo)的。板書:轉(zhuǎn)化)。
    3.(出示教具)大家覺得這個圓錐與哪個立體圖形的關(guān)系最近呢?(老師比較學(xué)生指出的圓柱與圓錐的底和高,引導(dǎo)學(xué)生發(fā)現(xiàn)這個圓柱與圓錐等底等高。)。
    5.它們的體積之間到底有什么關(guān)系呢?
    二、實驗操作、推導(dǎo)圓錐體積計算公式。
    1.課件出示例5。
    (1)通過演示使學(xué)生知道什么叫等底等高。
    (3)實驗操作,發(fā)現(xiàn)規(guī)律。
    (用學(xué)具演示)在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的。
    (4)是不是所有的圓柱和圓錐都有這樣的。關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
    2.教師課件演示。
    3.學(xué)生討論實驗情況,匯報實驗結(jié)果。
    4.啟發(fā)引導(dǎo)推導(dǎo)出計算公式并用字母表示。
    圓錐的體積=等底等高的圓柱的體積1/3=底面積高1/3。
    用字母表示:v=1/3sh。
    5.教學(xué)試一試。
    (1)出示題目。
    (2)審題后可讓學(xué)生根據(jù)圓錐體積計算公式自己試做。
    (3)批改講評。注意些什么問題。
    三、發(fā)散練習(xí)、鞏固推展。
    1.做練一練第1.2題。
    指名一人板演,其余學(xué)生做在練習(xí)本上。集體訂正,強調(diào)要乘以1/3。
    2.做練習(xí)四第1.2題。
    學(xué)生做在課本上。之后學(xué)生反饋。錯的要求說明理由。
    四、小結(jié)。
    這節(jié)課你學(xué)習(xí)了什么內(nèi)容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
    學(xué)生交流。
    五、作業(yè)。
    練習(xí)四第3題。
    圓錐的體積教案篇三
    1、通過練習(xí)學(xué)生進一步理解、掌握圓錐的特征及體積計算公式。
    2、能正確運用公式計算圓錐的體積,并解決一些簡單的實際問題。
    3、培養(yǎng)學(xué)生認真審題,仔細計算的習(xí)慣。
    進一步掌握圓錐的體積計算及應(yīng)用。
    :圓錐體積公式的靈活運用。
    一、知識回顧。
    1、前幾節(jié)課我們認識了哪兩個圖形?你能說說有關(guān)它們的知識嗎?
    2、學(xué)生說,教師板書:
    圓錐圓柱。
    特征1個底面2個。
    扇形側(cè)面展開長方形。
    體積v=1/3shv=sh。
    二、提出本節(jié)課練習(xí)的內(nèi)容和目標(biāo)。
    三、課堂練習(xí)。
    (一)、基本訓(xùn)練。
    1、填空課本1----2(獨立完成后校對)。
    已知:底面積、直徑、周長與高求體積(小黑板出示)。
    (二)、綜合訓(xùn)練:
    1、判斷。
    (1)圓錐的體積等于圓柱的1/3。
    (2)長方體、正方體、圓柱和圓錐的體積公式都可用v=sh。
    (3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升。
    (4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米。
    2、應(yīng)用:練習(xí)四第45題任選一題。
    3、發(fā)展題:獨立思考后校對。
    四課堂小結(jié):說說本節(jié)課的收獲。
    圓錐的體積教案篇四
    師:同學(xué)們,今天我們來學(xué)習(xí)“圓錐的體積”(板書課題)。
    理解并掌握圓錐的體積計算公式,并能運用公式解決實際問題。
    認真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的體積計算方法,并將例3補充完整。想:
    5分鐘后,比誰能正確地回答思考題并能做對檢測題!
    檢測題。
    完成課本第34頁“做一做”第1、2題。
    小組合作,校正答案。
    后教。
    口答。
    小組內(nèi)互相說。
    當(dāng)堂訓(xùn)練。
    1、必做題:
    課本第35頁第5、6、7題。(做在作業(yè)本上)。
    2、選做題:
    有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數(shù)保留兩位小數(shù))。
    圓錐的體積教案篇五
    1.說出圓柱的體積計算公式。
    2.我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常??吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)。
    圓錐的體積教案篇六
    1.練習(xí)三第5題及數(shù)訓(xùn)。
    2.出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學(xué)們回去測量你用第167頁圖制作的圓錐,求出它的體積來。
    3.思考練習(xí)三第8、9題。
    圓錐的體積教案篇七
    1、通過動手操作實驗,推導(dǎo)出圓錐體體積的計算公式。
    2、理解并掌握體積公式,能運用公式求圓錐的體積,并會解決簡單的實際問題。
    3、通過學(xué)生動腦、動手,培養(yǎng)學(xué)生的觀察、分析的綜合能力。
    等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學(xué)課件。
    一、復(fù)習(xí)舊知,做好鋪墊。
    1、認識圓柱(課件演示),并說出怎樣計算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)。
    (1)底面積是5平方厘米,高6厘米,體積=?
    (2)底面半徑是2分米,高10分米,體積=?
    (3)底面直徑是6分米,高10分米,體積=?
    3、認識圓錐(課件演示),并說出有什么特征?
    二、溝通知識、探索新知。
    教師導(dǎo)入:同學(xué)們,我們已經(jīng)認識了圓錐,掌握了它的特征,但是,對于圓錐的學(xué)習(xí)我們不能只停留在認識上,有關(guān)圓錐的知識還有很多有待于我們?nèi)W(xué)習(xí)、去探究。這節(jié)課我們就來研究“圓錐的體積”。(板書課題)。
    學(xué)生回答,教師板書:
    圓柱------(轉(zhuǎn)化)------長方體。
    圓柱體積計算公式--------(推導(dǎo))長方體體積計算公式。
    教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學(xué)生操作比較后,再用課件演示。
    (1)提問學(xué)生:你發(fā)現(xiàn)到什么?(圓柱和圓錐的底和高有什么關(guān)系?)。
    (學(xué)生得出:底面積相等,高也相等。)。
    教師:底面積相等,高也相等,用數(shù)學(xué)語言說就叫“等底等高”。
    (板書:等底等高)。
    教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數(shù)關(guān)系?(指名發(fā)言)。
    用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學(xué)自己商量,但最后要向同學(xué)們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關(guān)系。
    (3)學(xué)生分組做實驗,并借助課件演示。
    (教師深入小組中了解活動情況,對個別小組予以適當(dāng)?shù)膸椭?。
    a、誰來匯報一下,你們組是怎樣做實驗的?
    b、你們做實驗的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關(guān)系?
    (學(xué)生發(fā)言:圓柱體的體積是圓錐體體積的3倍)。
    教師:同學(xué)們得出這個結(jié)論非常重要,其他組也是這樣的嗎?
    學(xué)生回答后,教師用教學(xué)課件演示實驗的`全過程,并啟發(fā)學(xué)生在小組內(nèi)有條理地表述圓錐體體積計算公式的推導(dǎo)過程。
    教師:我們學(xué)過用字母表示數(shù),誰來把這個公式用字母表示一下?(指名發(fā)言,板書)。
    學(xué)生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒?jié)M嗎?(不需要)。
    為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒?jié)M呢?(因為是等底等高的圓柱體和圓錐體。)。
    (教師給體積公式與“等底等高”四個字上連線。)。
    進一步完善體積計算公式:
    =底面積×高×1/3。
    v=1/3sh。
    教師:現(xiàn)在我們得到的這個結(jié)論就更完整了。(指名反復(fù)敘述公式。)。
    課件出示:
    想一想,討論一下:?
    (1)通過剛才的實驗,你發(fā)現(xiàn)了什么?
    (2)要求圓錐的體積必須知道什么?
    學(xué)生后討論回答。
    三、應(yīng)用求體積、解決問題。
    1、口答。
    (1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
    (2)有一個圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?
    2、出示例題,學(xué)生讀題,理解題意,自己解決問題。
    a、學(xué)生完成后,進行小組交流。
    b、你是怎樣想的和怎樣解決問題的。(提問學(xué)生多人)。
    c、教師板書:
    1/3×19×12=76(立方厘米)。
    3、練習(xí)題。
    一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學(xué)生在黑板上只列式,反饋。)。
    我們已經(jīng)學(xué)會了求圓錐體的體積,現(xiàn)在我們來解決有關(guān)圓錐體體積的問題。
    4、出示例2:要求學(xué)生自己讀題,理解題意。
    在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)。
    (1)提問:從題目中你知道了什么?
    (2)學(xué)生獨立完成后教師提問,并回答學(xué)生的質(zhì)疑:
    3.14×(4÷2)2×1.2×1/3表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….
    5、比較:例1和例2有什么不同的地方?
    (2)例1是直接求體積,例2是求出體積后再求重量。
    圓錐的體積教案篇八
    2、求下列各圓柱的體積。(口答)。
    (1)底面積是5平方厘米,高是6厘米。
    (2)底面半徑4分米,高是10分米。
    (3)底面直徑2米,高是3米。
    師:剛才我們復(fù)習(xí)了圓柱的體積公式并應(yīng)用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關(guān)系呢?這節(jié)課我們就來研究圓錐的體積。(板書:圓錐的體積)。
    二、新課教學(xué)。
    師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學(xué)們自己做的圓錐講一講。
    生:圓錐的底面是圓形的。
    生:從圓錐的頂點到底面圓心的距離是圓錐的高。
    師:你能上來指出這個圓錐的高嗎?
    師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。
    師:你們看到過哪些物體是圓錐形狀的?(略)。
    師:對。在生活中有很多圓錐形的物體。
    師:剛才我們已經(jīng)認識了圓錐。現(xiàn)在我們再來研究圓錐的體積。請同學(xué)們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關(guān)系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導(dǎo)圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M。現(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。
    出示小黑板:
    1、圓錐的體積和同它等底等高的圓柱的體積有什么關(guān)系?
    學(xué)生分組做實驗,老師巡回指導(dǎo)。
    生:圓柱的體積是圓錐體積的3倍。
    生:圓錐的體積是同它等底等高的圓柱體權(quán)的1/3。
    板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。
    師:得出這個結(jié)論的同學(xué)請舉手。(略)你們是怎么得出這個結(jié)論的呢?
    生:我們先在圓錐內(nèi)裝滿沙,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。
    師:說得很好。那么圓錐的體積怎么算呢?
    生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。
    師:誰能說說圓錐的體積公式。
    師:老師也做了一個同樣實驗請同學(xué)認真看一看。想一想有什么話對老師說嗎?請看電視。
    師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。
    生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。
    生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。
    師:大家說得很對,那么為什么這幾個字特別重要?如果底和離不相等的圓錐和圓柱有沒有三分之一這個關(guān)系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學(xué)們用剛才做實驗的方法試試看。
    師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的三分之一的關(guān)鍵條件是等地等高。
    師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關(guān)系來解決下列問題。
    例l:一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?
    (兩名學(xué)生板演,老師巡視)。
    師:這位同學(xué)做的對不對?
    生:對!
    師:和他做的一-樣的同學(xué)請舉手。(絕大多數(shù)同學(xué)舉手)。
    師:那么這位同學(xué)做錯在哪里呢?(指那位做錯的同學(xué)做的)。
    生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。
    師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導(dǎo)出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。
    圓錐的體積教案篇九
    美國教育心理學(xué)家奧蘇伯爾說:如果我不得不把教育心理學(xué)還原為一條原理的話,影響學(xué)習(xí)的最重要的原因是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識狀況進行教學(xué)。本節(jié)課是學(xué)生在認識了圓錐特征的基礎(chǔ)上進行學(xué)習(xí)的。圓錐高的概念仍是本節(jié)課學(xué)習(xí)的一個重要知識儲備,因而有必要在復(fù)習(xí)階段利用直觀教具通過切、摸等活動,幫助學(xué)生理解透徹。學(xué)生分組操作時,肯定能借助倒水(或沙子)的實驗,親身感受等底等高的圓柱與圓錐體積間的3倍關(guān)系。但是他們不易發(fā)現(xiàn)隱藏在實驗中的等底等高的這一條件,這是實驗過程中的一個盲點。為凸現(xiàn)這一條件,可借助體積關(guān)系不是3倍的.實驗器材,引導(dǎo)學(xué)生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進行深度信息加工。
    圓錐的體積教案篇十
    美國教育心理學(xué)家奧蘇伯爾說:如果我不得不把教育心理學(xué)還原為一條原理的話,影響學(xué)習(xí)的最重要的原因是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識狀況進行教學(xué)。本節(jié)課是學(xué)生在認識了圓錐特征的基礎(chǔ)上進行學(xué)習(xí)的。圓錐高的概念仍是本節(jié)課學(xué)習(xí)的一個重要知識儲備,因而有必要在復(fù)習(xí)階段利用直觀教具通過切、摸等活動,幫助學(xué)生理解透徹。學(xué)生分組操作時,肯定能借助倒水(或沙子)的實驗,親身感受等底等高的圓柱與圓錐體積間的3倍關(guān)系。但是他們不易發(fā)現(xiàn)隱藏在實驗中的等底等高的這一條件,這是實驗過程中的一個盲點。為凸現(xiàn)這一條件,可借助體積關(guān)系不是3倍的實驗器材,引導(dǎo)學(xué)生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進行深度信息加工。
    一、復(fù)習(xí)舊知,鋪墊孕伏。
    1.(電腦出示一個透明的圓錐)仔細觀察,圓錐有哪些主要特征呢?
    2.復(fù)習(xí)高的概念。
    (1)什么叫圓錐的高?
    (2)請一位同學(xué)上來指出用橡皮泥制作的圓錐體模型的高。(提供刀片、橡皮泥模型等,幫助學(xué)生進行操作)。
    評析:
    圓錐特征的復(fù)習(xí)簡明扼要。圓錐高的復(fù)習(xí)頗具新意,通過動手操作,從而使抽象的高具體化、形象化。
    二、創(chuàng)設(shè)情境,引發(fā)猜想。
    1.電腦呈現(xiàn)出動畫情境(伴圖配音)。
    夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)。
    2.引導(dǎo)學(xué)生圍繞問題展開討論。
    問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當(dāng)?)。
    問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)。
    問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學(xué)交流一下,再向全班同學(xué)匯報)。
    過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學(xué)習(xí)了圓錐的體積后,就會弄明白這個問題。
    評析:
    數(shù)學(xué)課程要關(guān)注學(xué)生的生活經(jīng)驗和已有的知識體驗,教師在引入新知時,創(chuàng)設(shè)了一個有趣的童話情境,使枯燥的數(shù)學(xué)問題變?yōu)榛钌纳瞵F(xiàn)實,讓數(shù)學(xué)課堂充滿生命活力。學(xué)生在判斷公平與不公平中蘊涵了對等底等高圓柱和圓錐體積關(guān)系的猜想,他們在這一情境中敢猜想、要猜想、樂猜想,在猜想中交流,在交流中感悟,自然地提出了一個富有挑戰(zhàn)性的數(shù)學(xué)問題,從而引發(fā)了學(xué)生進一步探究的強烈欲望。
    三、自主探索,操作實驗。
    下面,請同學(xué)們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關(guān)系,解決電腦博士給我們提出的問題。
    出示思考題:
    (1)通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關(guān)系?
    (2)你們的小組是怎樣進行實驗的?
    1.小組實驗。
    圓錐的體積教案篇十一
    1、情感目標(biāo)培養(yǎng)學(xué)生探索合作精神。
    2、知識目標(biāo)理解圓錐體積公式的推導(dǎo)過程,掌握圓錐體積的計算公式,以及運用公式計算圓錐體積。
    3、能力目標(biāo)培養(yǎng)學(xué)生的空間想象力,合作交往能力、創(chuàng)新思維以及動手操作能力。
    理解圓錐體積公式的推導(dǎo)過程,掌握圓錐體積的計算公式。
    公式推導(dǎo)過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關(guān)系。
    活動目的:激發(fā)求知欲望。
    課件播放:春天到了,萬物復(fù)蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應(yīng)該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應(yīng)該是第一大!
    師:竹林里的爭論還在繼續(xù)著,同學(xué)們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!
    師:我們光是猜,說服力并不強,那么能找到什么真正能解決問題的辦法嗎?
    活動目的:通過師生、生生的'互動討論、交流、探究,從而發(fā)現(xiàn)圓錐的體積和圓柱的體積有關(guān)。
    1、出示課題。
    2、找圓錐體和學(xué)過的什么體有相似之處。
    3、猜一猜,圓柱的體積和圓錐的體積的關(guān)系。
    圓錐的體積教案篇十二
    1、知識目標(biāo):使學(xué)生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積,《圓錐的體積》教案設(shè)計及反思。.
    2、能力目標(biāo):培養(yǎng)學(xué)生初步的空間觀念,動手操作能力和邏輯思維能力。
    3、情感目標(biāo):向?qū)W生滲透知識間可以相互轉(zhuǎn)化的辯證唯物主義思想,讓學(xué)生學(xué)習(xí)將新知識轉(zhuǎn)化為原有知識的學(xué)習(xí)方法.
    教學(xué)重點:圓錐的體積計算
    教學(xué)難點:圓錐的體積計算公式的推導(dǎo).
    教學(xué)準備:圓錐形蘿卜、繩子,每個小組一個計算器、等底等高的圓柱和圓錐容器模型、沙土水等。
    一、復(fù)習(xí)導(dǎo)入。師:同學(xué)們,你們知道桌上那個白蘿卜,它是什么形體嗎?(圓柱體),現(xiàn)在,如是假設(shè)它的底面積是5平方厘米,高是4厘米,你怎樣求它的體積呢?求出體積后,問:現(xiàn)在老師想請你們幫個忙,把它削成一個最大的圓錐,你們有辦法嗎?說一說什么樣的圓錐體才算最大呢?(與原來的圓柱體蘿卜等底等高)
    二、探究新知1、實踐猜想.師:好,現(xiàn)在請同學(xué)們動手削蘿卜,比比哪一組削得最漂亮?學(xué)生削完后,問:誰來猜猜,現(xiàn)在削成的圓錐體積與剛才圓柱有什么關(guān)系呢?你是怎么猜測的?生1:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是5立方厘米。
    生2:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是10立方厘米。我是根據(jù)我們以前學(xué)過的在長方形里剪一個最大的三角形,三角形的面積是長方形的,所以我認為圓錐的體積也是圓柱體積的。
    生3: 我猜圓錐的體積可能等于原來那個蘿卜體積的,就是6立方厘米,是把削去的蘿卜拼起來和圓錐體蘿卜進行比較,發(fā)現(xiàn)削去的部分的體積大約是圓錐體積的2倍。
    生5:我可以把削成的圓錐與削去的蘿卜都拿去稱,再比較它們的重量。.
    生6:我把圓錐體蘿卜浸入盛有水的圓柱容器里,算出它的體積,再把削去部分的蘿卜也浸入盛有水的圓柱形容器里,根據(jù)水面上升的高度求出它的體積就知道了。.
    生7:我可以把剛才那個圓柱體蘿卜和削成的圓錐休蘿卜分別挖成空心的然后把空圓錐蘿卜盛滿水倒入圓柱體蘿卜中,分別算出體積后進行比較。
    生8:我可以用桌上的這些學(xué)具來驗證。.再讓學(xué)生比比哪種方法最合適?
    4、解決問題,教案《《圓錐的體積》教案設(shè)計及反思》。課件出示例1,讓學(xué)生獨立完成。5、教師小結(jié)。
    三、擴展應(yīng)用。(一)、基本練習(xí)。1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?2、測量圓錐體學(xué)具,求出體積,并說說高是怎么量的?3、一個圓錐的底面積直徑是20厘米,高是8厘米,它們體積是多少?(二)擴展練習(xí)。!、一個圓錐的體積是8立方分米,底面積是2平方分米,高是()分米?2、圓錐形的容器高12厘米,容器中盛滿水,如果水全部倒入等底的圓柱容器中,水面高是( )
    四、歸納小結(jié)。師:通過這節(jié)課的學(xué)習(xí),你學(xué)會了什么?你是怎么學(xué)會的?
    五、作業(yè)。
    這節(jié)課,體現(xiàn)了以下幾個特點:
    一、在“動”中獲新知。“動”是孩子的天性,每位孩子都充滿了“動”的欲望。由于幾何知識比較抽象,學(xué)生理解和掌握幾何圖形的概念、性質(zhì)、求積公式、形成空間觀念,都必須有大量具體的、形象的感性材料的積累。所以教材在編排這一知識塊的時候,就已安排了很多的實踐性練習(xí)。教學(xué)時,教者能充分利用這一特點,通過擺、剪、折、量、畫、分割、拼合等操作活動,使學(xué)生獲得鮮明、生動、形象的感性認識,在此基礎(chǔ)上,抽象概括出圓錐的體積計算方法,形成正確的空間觀念。
    二、在“動”中求發(fā)展。在教學(xué)圓錐的體積時,教者先讓學(xué)生觀察并討論推導(dǎo)圓錐體積公式的實驗方法,當(dāng)學(xué)生由于受圓柱體積公式推導(dǎo)方法的影響,思維受阻時,教者向?qū)W生提議:用桌上學(xué)具來驗證。同時推薦一些實驗用品:水或沙、尺等。讓學(xué)生在實驗中選擇并設(shè)置疑問:圓錐體積與圓柱體積的關(guān)系。通過實際操作,學(xué)生不僅得出圓錐體積的計算公式。獲得了知識的結(jié)果,而且經(jīng)歷了知識面發(fā)展、發(fā)生的過程,同時加強并鞏固口頭和書面表達能力,發(fā)展解決數(shù)學(xué)問題的能力,增進對數(shù)學(xué)的理解力。
    三、在“動”中學(xué)會與他人合作。學(xué)習(xí)是學(xué)生主體的主動建構(gòu)過程,其本質(zhì)是讓學(xué)生認識客觀世界,把書本中的知識結(jié)構(gòu)轉(zhuǎn)化為自己的認知結(jié)構(gòu)。這個過程是學(xué)生主體活動的過程,必須由學(xué)生親身參與,學(xué)生在動手中運用感官參與學(xué)習(xí),自覺主動地去操作、去學(xué)習(xí),在濃厚的動手實踐中不僅經(jīng)歷了知識的形成過程,而且也學(xué)會了如何與他人合作才能取得成功。
    圓錐的體積教案篇十三
    “圓錐的體積”是人教版小學(xué)數(shù)學(xué)第十二冊第二單元的內(nèi)容。是小學(xué)幾何初步知識的最后一個教學(xué)內(nèi)容,是學(xué)生在學(xué)習(xí)了平面圖形和長方體、正方體以及圓柱體這三種立體圖形的基礎(chǔ)上進行教學(xué)的。主要內(nèi)容包括理解圓錐體積計算公式和公式的具體運用。學(xué)生掌握這些知識,不僅有利于全面掌握長方體、正方體、圓柱和圓錐之間的本質(zhì)聯(lián)系,為學(xué)生學(xué)習(xí)初中的幾何知識打下基礎(chǔ),同時也可提高學(xué)生運用所學(xué)的數(shù)學(xué)知識和方法解決簡單實際問題的能力。
    依據(jù)數(shù)學(xué)課程標(biāo)準的理念,結(jié)合教材自身的特點和學(xué)生的認知規(guī)律,本節(jié)課需要達到的教學(xué)目標(biāo)有以下幾點:
    1.通過實驗,使學(xué)生理解和掌握求圓錐體積的計算公式,并能運用公式正確計算圓錐的體積。
    2.培養(yǎng)學(xué)生初步的空間觀念、觀察、操作能力和邏輯思維能力。
    3.向?qū)W生滲透“事物之間相互聯(lián)系”及“理論來源于實踐”的觀點。
    其中,教學(xué)重點是使學(xué)生理解和掌握圓錐體積的計算公式;難點是通過實驗理解圓柱和圓錐等底等高時體積間的倍數(shù)關(guān)系。
    根據(jù)本節(jié)課的內(nèi)容特點,同時也為了更好的完成教學(xué)目標(biāo),突出重點、突破難點,本節(jié)課,我主要采取讓學(xué)生做實驗的方法,通過動手操作、直觀演示,讓學(xué)生在充分感知中主動獲取知識,理解和掌握圓錐體積公式,這樣就克服了幾何形體計算公式教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解的弊病。學(xué)生則在教師的引導(dǎo)下充分發(fā)揮自身的主體作用,通過自己的操作、實驗、觀察比較、討論小結(jié)推導(dǎo)出圓錐體積的計算公式,從而初步學(xué)會運用實驗的方法探索新知。
    熟悉教材只是上好一節(jié)課的基礎(chǔ),而合理科學(xué)的教學(xué)程序才是上好一節(jié)課的關(guān)鍵。為了順利完成本節(jié)課的教學(xué)任務(wù),我精心設(shè)計了一下教學(xué)程序。主要分為以下幾個環(huán)節(jié):
    一、情境引入;二、探究新知;三、綜合歸納;四、合理應(yīng)用;五、能力拓展;六、全課總結(jié)。
    良好的導(dǎo)入是一節(jié)課成功的關(guān)鍵,它不僅能抓住學(xué)生的心弦,促使學(xué)生情緒高漲,步入智力興奮狀態(tài),還有助于幫助學(xué)生獲得良好的學(xué)習(xí)效果。
    根據(jù)本節(jié)課圓錐體積公式的推導(dǎo)要用到等底等高的圓柱與圓錐這一具體情況,本環(huán)節(jié)我設(shè)計了這樣一個情境:今天我們班來了一位新朋友:淘氣。淘氣想請同學(xué)們幫忙解決一個小問題,同學(xué)們愿意嗎?事情是這樣的:淘氣的學(xué)校門口有一個賣瓜子的小攤,老板為了省事,不用稱稱著賣,而是用硬紙板做了兩個容器,(大屏幕出示底為12。56平方厘米,高為6厘米的等底等高的圓柱和圓錐形容器)老板總是這樣給同學(xué)們宣傳:我的這兩個容器,底一樣高也一樣,如果你用圓柱形容器買一元錢只能裝一次,如果用圓錐形容器買一元錢則可以裝兩次。同學(xué)們,請你們幫淘氣想一想,淘氣應(yīng)該用那種方法賣瓜子呢?問題拋出后,給同學(xué)們一定的思考時間,然后讓同學(xué)們各抒己見。同學(xué)們的想法不同,當(dāng)然答案也就不同,這是教師抓住時機再次提問:要想知道那種方法劃算,必須怎么辦?當(dāng)學(xué)生提出計算體積時,就會發(fā)現(xiàn)所學(xué)知識不夠用了,學(xué)生的求知欲望自然被調(diào)動起來,這時出示課題:圓錐的課題。
    此時的學(xué)生極想知道圓錐體積的計算方法,這時教師給學(xué)生提出一個疑問:在我們學(xué)習(xí)圓柱體積時我們已經(jīng)清楚:長方體、正方體、圓柱的體積都可以用底面積乘高求得,那么圓錐的體積能否用底面積乘高來求呢?學(xué)生通過觀察等底等高的圓柱與圓錐不難發(fā)現(xiàn),底面積乘高求得的是圓柱的體積,這時教師再加以引導(dǎo):能否利用圓柱的體積來求圓錐的體積呢?為每組同學(xué)提供交流的時間,讓學(xué)生明白,只要弄清它們之間的關(guān)系,就能利用圓柱的體積求出圓錐的體積。究竟它們的體積之間有什么關(guān)系呢?先將圓錐放入圓柱中估計一下。我們要讓事實說話。
    引導(dǎo)學(xué)生做實驗發(fā)現(xiàn)等底等高的圓柱與圓錐體積之間的關(guān)系。為了保證實驗?zāi)苡行蛴行У亻_展,實驗前要對學(xué)生提出明確的要求:
    1、組長要明確分工,確定檢測員、操作員、記錄員。
    2、各小組做兩次實驗,兩次方法可以相同也可以不同,要保證實驗過程及結(jié)果的準確性。
    讓學(xué)生做兩次實驗的目的,是讓學(xué)生再次確定實驗的結(jié)果。當(dāng)學(xué)生完成后,請各組同學(xué)進行匯報交流。學(xué)生通過實驗會發(fā)現(xiàn)在等底等高的情況下圓錐體積是圓柱體積的1/3。教師板書。為了再次向?qū)W生強調(diào)等底等高,教師可以問學(xué)生:你們的學(xué)具都等底等高嗎?讓各組學(xué)生舉起自己的學(xué)具。老師發(fā)現(xiàn)我們各組之間的學(xué)具大小不同,結(jié)論怎么相同呢?使學(xué)生明白,在等底等高的情況下圓錐體積總是圓柱體積的1/3。這時教師再次質(zhì)疑:如果不等底等高還會存在這層關(guān)系嗎?小組之間交換圓錐再次做實驗,再次強調(diào)等底等高。
    利用板書,讓學(xué)生觀察,圓錐的體積我們可以怎樣進行計算?得出公式:圓錐體積=底面積×高×1/3。
    用字母表示:v=1/3sh。
    然后請同學(xué)們仔細閱讀所得的結(jié)論,你認為哪些字、詞比較關(guān)鍵?為什么?要求圓錐的體積必須知道哪些條件?對公式的辨析不僅可以使學(xué)生深入理解公式,而且可以避免學(xué)生在運用公式時出現(xiàn)錯誤。
    上課時的情境激發(fā)了學(xué)生的求知欲望,如果能夠解決這一問題,一定能讓學(xué)生獲得成功的體驗,因此本環(huán)節(jié)我安排學(xué)生解決的第一個問題是:采用哪種方法更劃算?讓學(xué)生利用條件計算圓柱與圓錐的體積。這樣做不僅前后呼應(yīng),而且也能讓學(xué)生再次深入理解圓錐的計算公式。
    第二個問題,則是利用例2改編的一個情境:淘氣的同學(xué)晶晶看到同學(xué)們幫淘氣解決了問題,也想請同學(xué)們幫個忙,利用多媒體出示:麥收季節(jié),晶晶家把收的小麥堆成了一個近似圓錐形的小麥堆,測得底面直徑是4米,高是1。2米,每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整數(shù))。教師做簡單引導(dǎo):要解決這一問題必須先求什么?然后讓學(xué)生獨立完成,再利用展臺展示個別學(xué)生的解題過程,并請學(xué)生談一談自己的解題思路。
    此時學(xué)生可能已經(jīng)有些滿足,如果繼續(xù)毫無意思的練習(xí),必將降低其學(xué)習(xí)的積極性,為此這一環(huán)節(jié)我就將練習(xí)題起了兩個有趣的名字:火眼金睛和智力大比拼,以此來激發(fā)學(xué)生的學(xué)習(xí)興趣。同時培養(yǎng)學(xué)生用所學(xué)知識解決實際問題的能力。這實際上是對圓錐等于與它等底等高圓柱體積的1/3的又一次體會。
    1、火眼金睛。
    火眼金睛其實是幾道判斷題,希望同學(xué)們能像孫悟空一樣利用自己的火眼金睛能識別出幾句話的對錯呢。
    1)、圓錐體積是圓柱體積的1/3。()。
    2)、如果圓柱圓錐等底等高,圓柱體積是圓錐的3倍,圓錐體積是圓柱體積的2/3。()。
    3)、等底等高的`圓柱與圓錐,圓錐體積比圓柱體積小2/3。()。
    通過這樣幾句話的判斷,可以讓學(xué)生深入的思考等底等高的圓柱與圓錐體積之間的關(guān)系,教師也可以從學(xué)生判斷的正誤上了解一下學(xué)生是否對這類應(yīng)用題已經(jīng)掌握。
    2、智力大比拼。
    智力大比拼則是在判斷題的基礎(chǔ)上,來解決一道實際問題,題目是這樣的:有一個高9厘米,底面積是20平方厘米的圓柱形容器,里面裝滿了水,用一個與它等底等高的實心圓錐擠壓,最后能擠出多少水?還剩多少水?如果有學(xué)生不明白題意,可利用手中的學(xué)具進行直觀演示。這樣也更有利于學(xué)生理解等底等高的圓柱與圓錐體積之間的關(guān)系。
    學(xué)生學(xué)了一節(jié)課,究竟學(xué)會了什么,讓他自己說說看,當(dāng)然,從學(xué)生的回答中教師也可以看出自己的教學(xué)任務(wù)是否完成,課上的是否成功。
    圓錐的體積教案篇十四
    (1)圓柱的上、下兩個面都相等。()。
    (2)圓錐的高和圓柱的高都有無數(shù)條。()。
    (3)圓柱和圓錐的側(cè)面都是曲面,圓柱的側(cè)面展開后是一個長方形,圓錐的側(cè)面展開后是一個扇形。()。
    (4)測量圓錐的高只要測出頂點到底面圓周上的一點就是圓錐的高。()。
    二、填一填:
    1.長方形繞它的長邊旋轉(zhuǎn)形成的(),長方形的長是這個圓柱的(),寬是這個圓柱的()。
    2.直角三角形繞它的一條直角邊旋轉(zhuǎn)形成(),直角三角形的一條直角邊是這個圓錐的(),另一條直角邊是這個圓錐的()。
    3.半圓繞它的直徑旋轉(zhuǎn)形成(),半圓的直徑是這個球的(),半圓的半徑也是這個球的(),半圓的圓心也就是這個圓的()。
    三、
    2.說出圓錐各部分名稱。
    四、說說下面物體哪些是圓柱,哪些是圓錐。不選的,請你說出不選的理由。
    圓錐的體積教案篇十五
    聽了侯老師的《圓錐的體積》一課,收獲很多,下面我想重點談本節(jié)課的兩點成功之處,希望能與大家一起探討。
    第一:為新知識的學(xué)習(xí)搭建合理平臺。
    主要體現(xiàn)在侯老師能夠運用原有知識來推動新知識的學(xué)習(xí),設(shè)計有獎問答和實驗等手段,讓學(xué)生大膽借鑒前面學(xué)習(xí)圓柱體積公式的方法來探究圓錐體積公式。利用遷移規(guī)律,讓學(xué)生從求圓柱體積的思路、方法中得到啟示,領(lǐng)悟出求圓錐體積的方法,使新舊知識得到整合。這種借鑒的學(xué)習(xí)方法,不僅使本節(jié)課的教學(xué)變得輕松,同時有利于學(xué)生更深刻地理解和掌握這種學(xué)習(xí)策略,有利于學(xué)生的進一步學(xué)習(xí)和終身的發(fā)展。
    第二:注重培養(yǎng)學(xué)生的實踐能力。
    這節(jié)課的重點是通過實驗來探究圓錐體積公式的由來,侯老師主要引導(dǎo)學(xué)生做了三個實驗。一是比較圓柱和圓錐是等底等高,強調(diào)圓柱和圓錐是等底等高這個必要條件;二是做用裝滿小米的圓柱在空圓錐中倒的實驗,使學(xué)生理解等底等高的圓柱和圓錐存在著一定的倍數(shù)關(guān)系;三是特別設(shè)計了一組不等底或不等高的圓柱和圓錐來做倒米實驗,再次強調(diào)只有等底等高的圓柱和圓錐存在著的倍數(shù)關(guān)系。在實驗前,讓學(xué)生了解實驗要求,并且提出三個實驗?zāi)康模海?、圓錐的底面與圓柱的底面有什么關(guān)系?他們的高有什么關(guān)系?你是怎么知道的?2、圓錐的體積和與它等底等高的圓柱體積有什么關(guān)系?3、怎樣計算圓錐的體積?計算公式是什么?)以實驗?zāi)康臑橹骶€,讓學(xué)生小組合作,通過動手操作,有眼睛觀察,動腦筋思考,多種感官一起參與活動,由直觀到抽象,層層深入,探索出圓錐體積公式的由來,從而理解和掌握了圓錐體積的計算公式,培養(yǎng)了學(xué)生的觀察能力、操作能力和初步的空間觀念,克服了幾何形體公式計算教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解,重知識、輕能力的弊病。這樣的學(xué)習(xí),學(xué)生學(xué)得活,記得牢,既發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)過程中,是一個探索者、研究者、合作者、發(fā)現(xiàn)者,并且獲得了富有成效的學(xué)習(xí)體驗。
    不過這節(jié)課也存在一些不足,教學(xué)環(huán)節(jié)的銜接和時間的分配有些不恰當(dāng),教學(xué)方法沒有多樣化,欠缺改革創(chuàng)新。例如:在教學(xué)新課時,像傳統(tǒng)教學(xué)那樣,直接拿出圓柱和圓錐容器的教具,讓學(xué)生根據(jù)實驗要求和目的,進行倒米實驗。我認為在實驗前,一定要為學(xué)生創(chuàng)設(shè)良好的問題情景,如(你覺得圓錐體積的大小與它的什么有關(guān)?你認為圓錐的體積和什么圖形的`體積關(guān)系最密切?猜一猜它們的體積有什么關(guān)系呢?你們想知道它們的關(guān)系嗎?)通過師生交流、問答、猜想等形式,強化問題意識,激發(fā)學(xué)生的思維,使學(xué)生產(chǎn)生強烈的求知欲望。這時候,學(xué)生就迫切希望通過實驗來證實自己的猜想,所以做起實驗來就興趣盎然。這樣學(xué)生的思維被激活了,學(xué)習(xí)的積極性提高了,興趣變濃了,課堂氣氛變得熱烈,那么教學(xué)效率,教學(xué)效果就可想而知了。
    當(dāng)然,我相信#老師通過這次的鍛煉,在今后的教學(xué)道路上一定會越走越寬廣。謝謝大家!
    圓錐的體積教案篇十六
    教學(xué)目標(biāo):
    1、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱體和圓錐體之間的關(guān)系,從而得出圓錐體的體積公式。
    2、能運用公式解答有關(guān)的實際問題。
    3、滲透轉(zhuǎn)化、實驗、猜測、驗證等數(shù)學(xué)思想方法,培養(yǎng)動手能力和探索意識。
    教學(xué)重點:通過實驗的方法,得到計算圓錐體積的公式。
    教學(xué)難點:運用圓錐體積公式正確地計算體積。
    教學(xué)過程:
    一、創(chuàng)設(shè)情境,引發(fā)猜想。
    在一個悶熱的中午,小白兔買了一個圓柱形的雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當(dāng)?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學(xué)交流一下,再向全班同學(xué)匯報。
    小白兔究竟跟狐貍怎樣交換才公平合理呢?學(xué)習(xí)了“圓錐的體積”后,就會弄明白這個問題。
    二、自主探索,操作實驗。
    1、出示學(xué)習(xí)提綱。
    (2)你們小組是怎樣進行實驗的?
    (3)你能根據(jù)實驗結(jié)果說出圓錐體的體積公式嗎?
    (4)要求圓錐體積需要知道哪兩個條件?
    2、小組合作學(xué)習(xí)。
    3、回報交流。
    公式:v=1/3sh。
    4、問題解決。
    小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?
    5、運用公式解決問題。
    教學(xué)例題1和例題2。
    三、鞏固練習(xí) 。
    (1)底面面積是7.8平方米,高是1.8米.
    (2)底面半徑是4厘米,高是21厘米.
    (3)底面直徑是6分米,高是6分米.
    4、判斷對錯,并說明理由.
    (1)圓柱的體積相當(dāng)于圓錐體積的3倍.(?。?。
    (2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2?。?.(?。?。
    (3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.(?。?BR>    四、拓展延伸。
    一個圓錐的底面周長是314厘米,高是9厘米,它的體積是多少立方厘米?
    五、談?wù)勈斋@。
    六、作業(yè)。
    圓錐的體積教案篇十七
    人教版九年義務(wù)教育小學(xué)數(shù)學(xué)教科書第十二冊。
    這部分知識是學(xué)生在有了圓錐的認識和圓柱體積相關(guān)知識的基礎(chǔ)上進行教學(xué)的。在知識與技能上,通過對圓錐體的研究,經(jīng)歷并理解圓錐體積公式的推導(dǎo)過程,會計算圓錐的體積;在方法的選擇上,抓住新舊知識間的聯(lián)系,通過猜想、課件演示、實踐操作,從經(jīng)歷和體驗中驗證,讓學(xué)生在自主探索與合作交流過程中真正理解和掌握基本的數(shù)學(xué)知識與技能,數(shù)學(xué)思想和方法,使學(xué)生真正成為學(xué)習(xí)的主人。
    1、使學(xué)生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關(guān)簡單的實際問題。
    2、讓學(xué)生經(jīng)歷猜想——驗證,合作——探究的教學(xué)過程,理解圓錐體積公式的推導(dǎo)過程,體驗轉(zhuǎn)化的思想。
    3、培養(yǎng)學(xué)生動手操作、觀察、分析、推理能力,發(fā)展空間觀念,滲透事物是普遍聯(lián)系的唯物辯證思想。
    [點評:知識與技能目標(biāo)的設(shè)計全面、具體、有針對性。不但使學(xué)生掌握圓錐體積的計算公式,而且培養(yǎng)了學(xué)生運用圓錐體積公式解決生活中的實際問題的能力,使學(xué)生體會到數(shù)學(xué)與生活的密切聯(lián)系注。并注重對學(xué)生“猜想——————驗證”、“合作——————探究”等學(xué)習(xí)方式的培養(yǎng)及“轉(zhuǎn)化”數(shù)學(xué)思想方法的滲透;同時關(guān)注學(xué)生空間觀念的培養(yǎng)及唯物辯證思想的滲透。
    掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。
    理解圓錐體積公式的推導(dǎo)過程及解決生活中的實際問題。
    一、 創(chuàng)設(shè)情境導(dǎo)入新課。
    2、引導(dǎo)學(xué)生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學(xué)可以同桌交流,共同研究。(組織學(xué)生先獨立思考,然后同桌討論交流,最后匯報自己的想法。)
    3、教師出示一個圓錐體的木塊引導(dǎo)學(xué)生明確前面所想的方法太麻繁、不實用。并鼓勵學(xué)生研究出一種簡便快捷的方法來求圓錐的體積。
    二、經(jīng)歷體驗,探究新知
    (一)滲透轉(zhuǎn)化,幫助猜想
    1、先組織學(xué)生自由暢談圓錐的體積可能會與誰有關(guān)(圓柱)。先給學(xué)生獨立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導(dǎo)學(xué)生回憶圓柱體積公式的推導(dǎo)過程。
    2、組織學(xué)生拿出準備好的圓柱體鉛筆和轉(zhuǎn)筆刀來削鉛筆,同時教師也隨著學(xué)生一起來做。教師做好后要及時巡視,直到學(xué)生將鉛筆削得尖尖的為止。然后引導(dǎo)學(xué)生認真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學(xué)生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關(guān)系。(削好后的圓柱與圓錐等底不等高,體積無關(guān)。)此時,教師要參與到小組討論中,及時引導(dǎo)學(xué)生發(fā)現(xiàn)削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關(guān)。組織學(xué)生自己的話來總結(jié)。最后,將自己的發(fā)現(xiàn)進行匯報。
    (二)小組合作,實驗驗證。
    1、教師發(fā)給每組學(xué)生一個準備好的等底等高的圓柱和圓錐、沙了,組織學(xué)生拿出等底等高的圓柱和圓錐進行實驗。實驗前小組成員進行組內(nèi)分工,有的進行操作,有的記錄……實驗中教師要及時巡視指導(dǎo)并參與到小組實驗中去及時了解學(xué)生實驗的進展情況。并指導(dǎo)幫助學(xué)生順利完成實驗。
    2、實驗后組內(nèi)成員進行交流。交流的過程中,要引導(dǎo)學(xué)生注重傾聽別人的想法,并說出自己不同的見解。
    3、首先各小組派代表進行匯報,其它小組可以補充。然后全班進行交流實驗結(jié)果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導(dǎo)出圓錐的體積公式。預(yù)設(shè)板書如下:
    概括板書:
    等底到高
    v圓柱=sh v圓錐= 1/3sh
    4、深化公式。組織學(xué)生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預(yù)設(shè)板書如下:
    v =1/3πr2h v =1/3(c/2π)2h v =1/3(d/2)2h
    5、教師組織學(xué)生獨立完成書中例題后集體訂正。
    (三)看書質(zhì)疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。
    三、鞏固新知,拓展應(yīng)用。
    1、判斷并說明理由
    (1)圓柱體積是圓錐體積的3倍( )
    (2)一個圓錐的高不變,底面積越大,體積越大。( )
    (3)一個圓錐體的高是3分米,底面積10平方分米,它的體積是30立方分米。( )
    組織學(xué)生打手勢判斷后說明理由,并強調(diào)圓錐的體積是圓柱體積的1/3是以等底等高為前提的。
    2、求下列圓錐的體積(口答,只列式,不計算)
    s=4平方米,h=2平方米
    r=2分米,h=3分米
    d=6厘米,h=5厘米
    組織學(xué)生根據(jù)圓錐體積公式解答。
    3、實踐與應(yīng)用:
    學(xué)校操場有一堆圓錐沙子,求它的體積需要什么條件,你有什么好辦法?
    組織學(xué)生進行討論,求圓錐體的沙堆的體積需要什么條件后并談如何來測量這些所需條件,有條件的可領(lǐng)學(xué)生實地操作一下。再求體積。
    四、課后總結(jié),感情升華。
    這節(jié)課你有什么收獲?你是怎樣獲得的?
    [總評:
    1、鉆研教材,創(chuàng)造性地使用教材。
    教師在充分了解學(xué)生、把握課程標(biāo)準、教學(xué)目標(biāo)、教材編寫意圖的基礎(chǔ)上,根據(jù)學(xué)生生活實際和學(xué)習(xí)實際,有目的地對教材內(nèi)容進行改編和加工。如學(xué)生削鉛筆這一活動的設(shè)計,學(xué)生從“削”的過程中體驗到圓柱與圓錐的聯(lián)系;再如動手實驗這一環(huán)節(jié)的設(shè)計,使學(xué)生在觀察、比較、動手操作,合作交流中理解掌握新知。創(chuàng)造性地融入一些生活素材,加強了數(shù)學(xué)與生活的密切聯(lián)系。
    2、注重數(shù)學(xué)思想方法的滲透。
    數(shù)學(xué)思想方法是數(shù)學(xué)知識的精髓,又是知識轉(zhuǎn)化為能力的橋梁。新課伊始,便讓學(xué)生自己想辦法求圓錐的體積,此時學(xué)生便想辦法將圓錐體的容器裝滿水后倒入圓柱或長(正)方體的容器中,從而求出圓錐的體積。這一過程潛移默化地滲透“轉(zhuǎn)化”的數(shù)學(xué)思想方法。再如:讓學(xué)生將圓柱體的鉛筆削成圓錐體的這一活動,也同樣滲透了轉(zhuǎn)化的思想方法。
    3、猜想—————驗證、合作交流等學(xué)習(xí)方式體現(xiàn)了學(xué)生的主體地位。