2023年多邊形的內(nèi)角和教案(通用14篇)

字號(hào):

    教案是教師備課的重要內(nèi)容,也是教學(xué)工作的依據(jù)之一。教案的編寫應(yīng)該注重教學(xué)資源的合理運(yùn)用,以及多種教學(xué)手段和評(píng)價(jià)方式的運(yùn)用。這些教案范文包括了不同學(xué)段、不同學(xué)科的示范性教學(xué)設(shè)計(jì)。
    多邊形的內(nèi)角和教案篇一
    (1)知識(shí)結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的`有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn):
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評(píng)價(jià).
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
    3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序.
    練習(xí):課本124頁(yè)1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.
    注意:在研究四邊形時(shí),常常通過作它的對(duì)角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    練習(xí):
    1.課本124頁(yè)3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁(yè)2、3、4題.
    多邊形的內(nèi)角和教案篇二
    設(shè)計(jì)理念:。
    一教材分析:。
    從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內(nèi)角和到四邊形的內(nèi)角和至多邊形的內(nèi)角和,環(huán)環(huán)相扣。同時(shí),對(duì)今后學(xué)習(xí)的鑲嵌,正多邊形和圓等都是非常重要的。知識(shí)的聯(lián)系性比較強(qiáng)。因此,本節(jié)課具在承上啟下的作用,符合學(xué)生的認(rèn)知規(guī)律。再?gòu)谋竟?jié)的教學(xué)理念看,編者從簡(jiǎn)單的幾何圖形入手,蘊(yùn)含了把復(fù)雜問題轉(zhuǎn)化為簡(jiǎn)單問題,化未知為已知的思想。充分體現(xiàn)了人人學(xué)有價(jià)值的數(shù)學(xué),這一新課程標(biāo)準(zhǔn)精神。
    二、學(xué)情分析:。
    三、教學(xué)目標(biāo)的確定:。
    3、通過探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過渡到論證幾何。
    四、重難點(diǎn)的確立:。
    既然是多邊形內(nèi)角和具有承上啟下的作用。因此確定本節(jié)課的重點(diǎn)是探究多邊形的內(nèi)角和的公式。由于七年級(jí)學(xué)生初學(xué)幾何,所以學(xué)生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點(diǎn)是探究多邊形內(nèi)角和公式推導(dǎo)的基本思想,而解決問題的關(guān)鍵是教師恰當(dāng)?shù)囊龑?dǎo)。
    多邊形的內(nèi)角和教案篇三
    過程與方法目標(biāo):通過多邊形內(nèi)角和公式的推導(dǎo)過程,提高邏輯思維能力。
    情感態(tài)度與價(jià)值觀目標(biāo):養(yǎng)成實(shí)事求是的科學(xué)態(tài)度。
    教學(xué)重點(diǎn):多邊形的內(nèi)角和公式
    教學(xué)難點(diǎn):多邊形內(nèi)角和公式
    講解法、練習(xí)法、分小組討論法
    結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過程設(shè)置為以下五個(gè)教學(xué)環(huán)節(jié):導(dǎo)入新知、
    生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
    1. 導(dǎo)入新知
    首先是導(dǎo)入新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的
    內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
    通過提問的方式幫助學(xué)生回顧舊知識(shí)的同時(shí),引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。
    2. 生成新知
    接下來,進(jìn)入生成新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生將四邊形分成兩個(gè)三角形來求內(nèi)角和,由此
    得出四邊形的內(nèi)角和是2個(gè)三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個(gè)頂點(diǎn)出發(fā)劃分為3個(gè)4個(gè)三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個(gè)人為一個(gè)小組,五分鐘時(shí)間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個(gè)小組來回答他們討論的結(jié)果。由此生成我們的新知識(shí):多邊形的內(nèi)角和公式180*(n-2)。
    驗(yàn)證:七邊形驗(yàn)證
    在本環(huán)節(jié)中通過學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3. 深化新知
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生思考一下有沒有其他的將多邊形分隔求
    內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個(gè)頂點(diǎn)出發(fā),然后用公式驗(yàn)證一下我們這樣分割可行不可行。這時(shí)候會(huì)發(fā)現(xiàn)有的分割可行有的分割不可行,在這個(gè)時(shí)候給他們講解為什么不可行為什么可行,以此來引出分割時(shí)對(duì)角線不能相交,從而強(qiáng)調(diào)我們分隔的一個(gè)原則。
    本環(huán)節(jié)的設(shè)計(jì)主要是對(duì)多變形內(nèi)角和的一個(gè)深入了解,給學(xué)生一個(gè)內(nèi)化的過程,同時(shí)引導(dǎo)學(xué)生不要將知識(shí)學(xué)死了,要活學(xué)活用,從多個(gè)角度來思考問題,解決問題。
    4. 鞏固提高
    我們說數(shù)學(xué)是來源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領(lǐng)學(xué)生用我們所學(xué)過的多邊形的內(nèi)角和公式來解決生活中的實(shí)際問題。
    我會(huì)在ppt上播放一個(gè)蜂巢的圖片,然后提出一個(gè)問題,蜂房是幾邊形?每個(gè)蜂房的內(nèi)角和是多少?由此來引發(fā)學(xué)生思考運(yùn)用我們本節(jié)課所學(xué)習(xí)的知識(shí)來解決問題,對(duì)多邊形的內(nèi)角和公式進(jìn)一步鞏固提高。
    5. 小結(jié)作業(yè)
    先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識(shí)點(diǎn),然后找一位同學(xué)來總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識(shí)點(diǎn)。對(duì)本節(jié)課學(xué)習(xí)內(nèi)容有了一個(gè)回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來進(jìn)一步提升學(xué)生運(yùn)用知識(shí)的能力。
    多邊形的內(nèi)角和教案篇四
    知識(shí)與技能:掌握多邊形內(nèi)角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    重點(diǎn):多邊形內(nèi)角和定理的探索和應(yīng)用。
    教學(xué)難點(diǎn):邊形定義的理解;多邊形內(nèi)角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.。
    教學(xué)過程。
    第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問題,引入新(3分鐘,學(xué)生思考問題,入)。
    1.多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無(wú)處不在的多邊形.。
    2.工人師傅鋸桌面:一個(gè)四邊形的桌面,用鋸子鋸掉一個(gè)角,還剩幾個(gè)角?
    第二環(huán)節(jié)概念形成(5分鐘,學(xué)生理解定義)。
    第三環(huán)節(jié)實(shí)驗(yàn)探究(12分鐘,學(xué)生動(dòng)手操作,探究?jī)?nèi)角和)。
    (以四人小組為單位展開探究活動(dòng))。
    活動(dòng)一:利用四邊形探索四邊形內(nèi)角和。
    要求:先獨(dú)立思考再小組合作交流完成.)。
    (師巡視,了解學(xué)生探索進(jìn)程并適當(dāng)點(diǎn)撥.)。
    (生思考后交流,把不同的方案在紙上完成.)。
    ……(組間交流,教師展示幾種方法)。
    進(jìn)而引導(dǎo)學(xué)生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進(jìn)一步提出新的探索活動(dòng)。
    活動(dòng)二:探索五邊形內(nèi)角和。
    (要求:獨(dú)立思考,自主完成.)。
    第四環(huán)節(jié)思維升華(5分鐘,教師引導(dǎo)學(xué)生進(jìn)行推算)。
    教學(xué)過程:
    探索n邊形內(nèi)角和,并試著說明理由。
    (結(jié)合出示的圖表從代數(shù)角度猜測(cè)公式,并從幾何意義加以解讀)。
    n邊形的內(nèi)角和=(n—2)180°。
    正n邊形的一個(gè)內(nèi)角==。
    第五環(huán)節(jié)能力拓展(12分鐘,學(xué)生搶答)。
    搶答題:
    1.正八邊形的內(nèi)角和為_______.
    3.一個(gè)多邊形每個(gè)內(nèi)角的度數(shù)是150°,則這個(gè)多邊形的邊數(shù)是_______.
    應(yīng)用發(fā)散:
    第六環(huán)節(jié)時(shí)小結(jié):(3分鐘,學(xué)生填表)。
    第七環(huán)節(jié)布置作業(yè):習(xí)題4、10。
    b組(中等生)1。
    c組(后三分之一生)1。
    教學(xué)反思:
    多邊形的內(nèi)角和教案篇五
    過程與方法目標(biāo):通過多邊形內(nèi)角和公式的推導(dǎo)過程,提高邏輯思維能力。
    情感態(tài)度與價(jià)值觀目標(biāo):養(yǎng)成實(shí)事求是的科學(xué)態(tài)度。
    講解法、練習(xí)法、分小組討論法。
    結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過程設(shè)置為以下五個(gè)教學(xué)環(huán)節(jié):導(dǎo)入新知、
    生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
    1.導(dǎo)入新知。
    首先是導(dǎo)入新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的。
    內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
    通過提問的方式幫助學(xué)生回顧舊知識(shí)的同時(shí),引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。
    2.生成新知。
    接下來,進(jìn)入生成新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生將四邊形分成兩個(gè)三角形來求內(nèi)角和,由此。
    得出四邊形的內(nèi)角和是2個(gè)三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個(gè)頂點(diǎn)出發(fā)劃分為3個(gè)4個(gè)三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個(gè)人為一個(gè)小組,五分鐘時(shí)間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個(gè)小組來回答他們討論的結(jié)果。由此生成我們的新知識(shí):多邊形的內(nèi)角和公式180*(n-2)。
    驗(yàn)證:七邊形驗(yàn)證。
    在本環(huán)節(jié)中通過學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3.深化新知。
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生思考一下有沒有其他的將多邊形分隔求。
    內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個(gè)頂點(diǎn)出發(fā),然后用公式驗(yàn)證一下我們這樣分割可行不可行。這時(shí)候會(huì)發(fā)現(xiàn)有的分割可行有的分割不可行,在這個(gè)時(shí)候給他們講解為什么不可行為什么可行,以此來引出分割時(shí)對(duì)角線不能相交,從而強(qiáng)調(diào)我們分隔的一個(gè)原則。
    本環(huán)節(jié)的設(shè)計(jì)主要是對(duì)多變形內(nèi)角和的一個(gè)深入了解,給學(xué)生一個(gè)內(nèi)化的過程,同時(shí)引導(dǎo)學(xué)生不要將知識(shí)學(xué)死了,要活學(xué)活用,從多個(gè)角度來思考問題,解決問題。
    4.鞏固提高。
    我們說數(shù)學(xué)是來源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領(lǐng)學(xué)生用我們所學(xué)過的多邊形的內(nèi)角和公式來解決生活中的實(shí)際問題。
    我會(huì)在ppt上播放一個(gè)蜂巢的圖片,然后提出一個(gè)問題,蜂房是幾邊形?每個(gè)蜂房的內(nèi)角和是多少?由此來引發(fā)學(xué)生思考運(yùn)用我們本節(jié)課所學(xué)習(xí)的知識(shí)來解決問題,對(duì)多邊形的內(nèi)角和公式進(jìn)一步鞏固提高。
    5.小結(jié)作業(yè)。
    先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識(shí)點(diǎn),然后找一位同學(xué)來總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識(shí)點(diǎn)。對(duì)本節(jié)課學(xué)習(xí)內(nèi)容有了一個(gè)回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來進(jìn)一步提升學(xué)生運(yùn)用知識(shí)的能力。
    多邊形的內(nèi)角和教案篇六
    (1)知識(shí)結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn):
    四邊形的概念。
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí)。請(qǐng)同學(xué)們回憶一下這些圖形的概念。找學(xué)生說出四種幾何圖形的概念,教師作評(píng)價(jià)。
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念。
    3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序。
    練習(xí):課本124頁(yè)1、2題。
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了。
    5.四邊形的對(duì)角線:
    (四)四邊形的內(nèi)角和定理。
    定理:四邊形的內(nèi)角和等于.
    注意:在研究四邊形時(shí),常常通過作它的對(duì)角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    證明:(1)(四邊形的內(nèi)角和等于),
    練習(xí):
    1.課本124頁(yè)3題。
    小結(jié):
    知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理。
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。
    作業(yè):課本130頁(yè)2、3、4題。
    多邊形的內(nèi)角和教案篇七
    本節(jié)課從復(fù)習(xí)舊知入手,在引課時(shí)提問三角形的相關(guān)知識(shí),讓學(xué)生在思想上對(duì)本節(jié)課產(chǎn)生興趣,并且會(huì)覺得知識(shí)點(diǎn)不是很難,提高學(xué)生的學(xué)習(xí)興趣,同時(shí)加強(qiáng)了數(shù)學(xué)與實(shí)際生活的聯(lián)系,讓學(xué)生感到數(shù)學(xué)離自己很近,激發(fā)了學(xué)生的求知欲,創(chuàng)設(shè)了良好的教學(xué)氛圍。
    其次注重讓學(xué)生在學(xué)習(xí)活動(dòng)中領(lǐng)悟數(shù)學(xué)思想方法。數(shù)學(xué)的思想方法比有限的數(shù)學(xué)知識(shí)更為重要。學(xué)生在探索多邊形內(nèi)角和的過程中先把多邊形轉(zhuǎn)化成三角形、進(jìn)而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學(xué)中適時(shí)的利用問題加以引導(dǎo),使學(xué)生領(lǐng)會(huì)數(shù)學(xué)思想方法,真正理解和掌握數(shù)學(xué)的知識(shí)、技能,增強(qiáng)空間觀念及數(shù)學(xué)思考能力培養(yǎng),并獲得數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。同時(shí),恰當(dāng)?shù)氖褂谜n件擴(kuò)大了課堂容量,使課堂教學(xué)的深度和廣度都有所提高。同時(shí)也加大了練習(xí)量,有助于學(xué)生知識(shí)可鞏固和提高。
    整節(jié)課學(xué)生的情緒飽滿,思維活躍,在教師適當(dāng)?shù)囊龑?dǎo)下,學(xué)生能夠合作交流和自主探究,成功的探索出了多邊形的內(nèi)角和公式,較好的完成了本節(jié)課的教學(xué)目標(biāo)。
    不足之處:
    1、本節(jié)課給學(xué)生提供的探究思考與交流的時(shí)間比較充足,但展示交流的機(jī)會(huì)不夠充分,并且個(gè)別學(xué)生沒有很好的融入課堂,游離于課本之外。
    2、本節(jié)課學(xué)生小組活動(dòng)的準(zhǔn)備、具體實(shí)施、歸納交流、評(píng)價(jià)等環(huán)節(jié)設(shè)計(jì)不夠完善。
    3、練習(xí)不夠多樣化。
    多邊形的內(nèi)角和教案篇八
    我說課的內(nèi)容是人教版七年級(jí)(下)冊(cè)第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí)。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說課。
    多邊形的內(nèi)角和是在三角形內(nèi)角和知識(shí)基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識(shí)探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對(duì)發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。
    1、我所任教的班級(jí),大部分學(xué)生來自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對(duì)數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。
    2、本節(jié)課讓學(xué)生通過實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對(duì)三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識(shí)。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會(huì)想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會(huì)是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對(duì)本課知識(shí)的學(xué)習(xí)和掌握。
    新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。
    【知識(shí)與技能】。
    【數(shù)學(xué)思考】。
    (1)通過測(cè)量,類比,推理等教學(xué)活動(dòng),探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語(yǔ)言表達(dá)能力。
    (2)通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
    【解決問題】。
    通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
    【情感態(tài)度】。
    1、通過動(dòng)手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。
    2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國(guó)主義熱情。
    基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):
    【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
    因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識(shí),提高課堂效率。
    本節(jié)課借鑒了美國(guó)教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:
    1.教學(xué)方法:
    根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動(dòng)手,從實(shí)踐中獲得知識(shí)。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。
    2.學(xué)習(xí)方法:
    利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
    1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。
    情景:請(qǐng)學(xué)生觀察“上海世博園”的宣傳視頻。
    從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國(guó)主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對(duì)建筑物的外觀抽象成已知的三角形、長(zhǎng)方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識(shí)“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長(zhǎng)方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識(shí),將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。
    2、環(huán)節(jié)二:合作交流、探索新知。
    活動(dòng)1:
    猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長(zhǎng)方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測(cè)出四邊形的內(nèi)角和等于360度。
    議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個(gè)問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測(cè)量和剪拼活動(dòng)中可能會(huì)產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,用自己的語(yǔ)言表達(dá)解決問題的方式方法,發(fā)展學(xué)生的語(yǔ)言表達(dá)能力與推理能力。
    針對(duì)不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵(lì)學(xué)生尋找多種分割形式,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達(dá)自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索,體驗(yàn)解決問題策略的多樣性。
    想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u(píng)價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。
    活動(dòng)2:
    做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對(duì)轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對(duì)轉(zhuǎn)化思想方法的理解,體會(huì)由簡(jiǎn)單到復(fù)雜,由特殊到一般的思想方法。
    議一議:
    問題1:對(duì)比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?
    問題2:能否采用不同的分割方法來解決這些問題?
    活動(dòng)3:
    嘗試完成第五列n邊形的探究。
    但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動(dòng)3公式的得出帶來困難。所以教師要因勢(shì)利導(dǎo),給學(xué)生正確的評(píng)價(jià)。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問題的最佳方法的能力。
    練一練:為了使學(xué)生達(dá)到對(duì)知識(shí)的鞏固與應(yīng)用,我特地設(shè)計(jì)了一組(5個(gè))即時(shí)搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計(jì)算,并根據(jù)學(xué)生都喜好競(jìng)賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問題并鞏固、理解、記憶公式。
    搶答:
    (1)過一個(gè)多邊形一個(gè)頂點(diǎn)有10條對(duì)角線,則這是邊形.
    (2)過一個(gè)多邊形一個(gè)頂點(diǎn)的所有對(duì)角線將這個(gè)多邊形分成五個(gè)三角形,則這是邊形.
    (3)多邊形的內(nèi)角和隨著邊數(shù)的增加而,邊數(shù)增加一條時(shí)它的內(nèi)角和增加度。
    3、環(huán)節(jié)三:例題講解,知識(shí)鞏固。
    在此,我設(shè)計(jì)了2個(gè)例題,并對(duì)教科書上的例題作了較小的改動(dòng),書上的例1簡(jiǎn)略講解,這個(gè)例題就是對(duì)四邊形的內(nèi)角和的簡(jiǎn)單應(yīng)用,對(duì)于學(xué)生來說比較簡(jiǎn)單;對(duì)于例2我把書后面的85頁(yè)習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識(shí)間的融會(huì)貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識(shí)。
    4、環(huán)節(jié)四:分組競(jìng)賽、情感升華。
    (1)智慧大比拼。
    內(nèi)容:p87的練習(xí)分成2類。
    通過新穎的形式激發(fā)學(xué)生的競(jìng)爭(zhēng)意識(shí)和主動(dòng)參與活動(dòng)的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識(shí)解決問題,鞏固本節(jié)知識(shí)。
    (2)拓展探究。
    小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵(lì)學(xué)生積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會(huì)成功的喜悅。
    (3)情系世博。
    引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國(guó)之情。
    5、環(huán)節(jié)五:暢所欲言、分享成果。
    請(qǐng)學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評(píng)價(jià)自己和他人表現(xiàn)的機(jī)會(huì),這也是給教者本身一個(gè)反思提高的機(jī)會(huì)。通過這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識(shí)系統(tǒng)化,從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。
    6、環(huán)節(jié)六:布置作業(yè)、課后提升。
    (1)習(xí)題7.3第2題、第4題。
    (2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。
    采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。
    評(píng)價(jià)學(xué)生,不僅僅是一個(gè)手段和結(jié)果,它對(duì)學(xué)生的人格、個(gè)性的發(fā)展有著極其重要的作用。新課程對(duì)課程的評(píng)價(jià)應(yīng)把握形成性、發(fā)展性評(píng)價(jià)和終結(jié)性評(píng)價(jià)相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個(gè)方面進(jìn)行評(píng)價(jià):
    1、評(píng)價(jià)在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動(dòng)手、思維、自學(xué)能力等〉的發(fā)展情況。
    2、評(píng)價(jià)學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。
    3、評(píng)價(jià)在學(xué)習(xí)過程中對(duì)身邊事物、社會(huì)現(xiàn)實(shí)的關(guān)注程度。
    評(píng)價(jià)必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動(dòng)力。
    最后,我的板書設(shè)計(jì)力求簡(jiǎn)潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。
    多邊形的內(nèi)角和教案篇九
    各位領(lǐng)導(dǎo),各位老師:
    大家下午好,很高興有機(jī)會(huì)參加這次教學(xué)研究活動(dòng)。
    我的教學(xué)設(shè)計(jì)是華師大版七年級(jí)數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個(gè)方面說一下本節(jié)課的教學(xué)設(shè)想:
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡(jiǎn)單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
    學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對(duì)內(nèi)角和的問題有了一定的認(rèn)識(shí),加上七年級(jí)的學(xué)生具有好奇心,求知欲強(qiáng),互相評(píng)價(jià)互相提問的積極性高。因此對(duì)于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。
    新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)。
    【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。
    【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。
    本次課改很大程度上借鑒了美國(guó)教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。
    【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。
    整個(gè)教學(xué)過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課。
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對(duì)外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。
    4,實(shí)際應(yīng)用,提高能力。
    "木工師傅可以用邊角余料鋪地板的原因是什么"這既是對(duì)本節(jié)所學(xué)知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時(shí)也為下節(jié)打下了一個(gè)鋪墊。
    5,分組競(jìng)賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學(xué)生所需掌握的知識(shí)目標(biāo):即多邊形內(nèi)角和與外角和定理。
    本節(jié)課在知識(shí)上由簡(jiǎn)單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競(jìng)賽活動(dòng),使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。
    多邊形的內(nèi)角和教案篇十
    其次注重讓學(xué)生在學(xué)習(xí)活動(dòng)中領(lǐng)悟數(shù)學(xué)思想方法。數(shù)學(xué)的思想方法比有限的數(shù)學(xué)知識(shí)更為重要。學(xué)生在探索多邊形內(nèi)角和的過程中先把多邊形轉(zhuǎn)化成三角形.進(jìn)而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學(xué)中適時(shí)的利用問題加以引導(dǎo),使學(xué)生領(lǐng)會(huì)數(shù)學(xué)思想方法,真正理解和掌握數(shù)學(xué)的知識(shí)、技能,增強(qiáng)空間觀念及數(shù)學(xué)思考能力培養(yǎng),并獲得數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。同時(shí),恰當(dāng)?shù)氖褂谜n件擴(kuò)大了課堂容量,使課堂教學(xué)的深度和廣度都有所提高。同時(shí)也加大了練習(xí)量,有助于學(xué)生知識(shí)可鞏固和提高。
    整節(jié)課學(xué)生的情緒飽滿,思維活躍,在教師適當(dāng)?shù)囊龑?dǎo)下,學(xué)生能夠合作交流和自主探究,成功的探索出了多邊形的.內(nèi)角和公式,較好的完成了本節(jié)課的教學(xué)目標(biāo)。
    不足之處:
    1.本節(jié)課給學(xué)生提供的探究思考與交流的時(shí)間比較充足,但展示交流的機(jī)會(huì)不夠充分,并且個(gè)別學(xué)生沒有很好的融入課堂,游離于課本之外。
    2.本節(jié)課學(xué)生小組活動(dòng)的準(zhǔn)備、具體實(shí)施、歸納交流、評(píng)價(jià)等環(huán)節(jié)設(shè)計(jì)不夠完善。
    3、練習(xí)不夠多樣化。
    多邊形的內(nèi)角和教案篇十一
    (2)怎樣才能知道一個(gè)圖形是幾邊形呢?也就是說如果有四條邊圍成的圖形就是四邊形,五條邊圍成的圖形呢?六條?七條呢?也就是說有幾天邊圍成的圖形就是幾邊形。
    (3)像這樣邊數(shù)比較多的圖形,我們給他們一個(gè)統(tǒng)一的名字叫多邊形,今天我們就認(rèn)識(shí)了這些多邊形(板書課題)。
    三、鞏固練習(xí)、提升拓展。
    1、數(shù)一數(shù)。
    瞧,這是幾邊形?(六邊形),六邊形有幾條邊?那咱們就在中間寫上6。那數(shù)數(shù)下面的圖形各有幾條邊,照樣子寫在圖形上。
    誰(shuí)來校對(duì)?按順序說是每個(gè)圖形分別有幾條邊?都對(duì)嗎?真棒!
    接下來,數(shù)一數(shù)每種圖形分別有幾個(gè),填在表格里。誰(shuí)來說?跟著數(shù)一數(shù),四邊形:1、2、3、4,4個(gè)。五邊形:1、2、33個(gè)。六邊形:1、22個(gè)。有數(shù)錯(cuò)的嗎?沒有?都對(duì)了!真棒!像這樣做上標(biāo)記,就不會(huì)數(shù)錯(cuò)和遺漏了。作業(yè)紙放回原地,看誰(shuí)做的好!
    2、圍一圍。
    認(rèn)識(shí)了這么多的多邊形,知道老師喜歡哪一個(gè)嗎?仔細(xì)看(示范圍)現(xiàn)在,你知道我喜歡的多邊形是?(五邊形)對(duì)了,你也想圍一圍嗎?先想一想你最喜歡幾邊形,然后動(dòng)手圍一圍。
    誰(shuí)來展示一下自己圍的作品,大聲告訴大家你喜歡的是什么圖形。
    (1)、你圍的是?數(shù)數(shù)它的邊?對(duì)嗎?也喜歡四邊形的吧作品舉高,向大家展示一下你的作品!
    (2)還有喜歡其他圖形的嗎?一一交流展示。
    3、折一折。
    小朋友們的動(dòng)手能力真不錯(cuò),接下來老師要考考你們,看看你們是否既會(huì)動(dòng)手又會(huì)動(dòng)腦???,出示正方形紙,老師演示,我折了一個(gè)(三角形)反過來,剩下的是(五邊形),你能折一個(gè)比老師大的三角形嗎?反過來數(shù)一數(shù),折掉一個(gè)三角形后剩下的是什么圖形。
    誰(shuí)來說,你折掉一個(gè)三角形后剩下的是幾邊形?
    預(yù)設(shè)一:跟老師一樣。折出一個(gè)三角形,剩下的`是五邊形。
    預(yù)設(shè)二:我這樣折一個(gè)三角形(對(duì)角線折),剩下的還是三角形。你真棒!
    預(yù)設(shè)三:我這樣折一個(gè)三角形,剩下的是一個(gè)四邊形。哦,了不起!
    真是一群小巧手!小朋友們太厲害了!想到了三種折法(課件同步展示三種不同的折法)是呀!同樣的正方形紙,當(dāng)折掉的三角形越來越大,剩下的圖形就可能不一樣!
    4、找一找。
    圖形寶寶們看見小朋友們玩得這么開心,它們也玩起了捉迷藏的游戲,從圖中能找到幾邊形?(四邊形)你能找到幾個(gè)?(點(diǎn)擊出示題目)看誰(shuí)找的多?作業(yè)紙第3題,開始。
    匯報(bào)、交流:(1)生:5個(gè)。師:(懷疑)5個(gè)吶?我只找到4個(gè)1。2。3。4生:還有一個(gè)最大的。哦,你比老師厲害,還多找了一個(gè),你看他找的多不多!不多呀?還有?(疑惑)。
    (2)生:7個(gè)。師同(1)的步驟教學(xué)。如果在5個(gè)的基礎(chǔ)上,就:又多了兩個(gè),你來指一指多的兩個(gè)在哪?看明白了嗎?他把兩個(gè)小的四邊形合成了一個(gè)大四邊形,你更厲害!找到了7個(gè)。還有?(更疑惑)。
    (3)生:9個(gè)。直接說9個(gè)的,還是同(1)的步驟教學(xué)。如果在(2)的基礎(chǔ)上,就:比7個(gè)還多2個(gè),還有兩個(gè)在哪?你來指一指。你是真的厲害,找到了9個(gè)四邊形,佩服!你們都看明白了嗎?來,咱們一起再來有序的數(shù)一數(shù):1個(gè),2個(gè),3個(gè),4個(gè),兩個(gè)兩個(gè)的合并,橫著看:這是第5個(gè),第6個(gè)。再豎著看:第7個(gè),第8個(gè)。還有一個(gè)最大的,第9個(gè)。(5,6,7,8,9數(shù)慢一點(diǎn))原來里面一共藏了9個(gè)四邊形呢!剛才找到9個(gè)的小朋友舉手,你們真棒!
    四、課堂小結(jié)展示生活中的多邊形。
    小朋友們,今天,咱們認(rèn)識(shí)了圖形王國(guó)里的?手指板書:(四邊形,五邊形,六邊形),以后還會(huì)有更多的圖形。這些變化多樣的圖形點(diǎn)綴了我們的生活,勞動(dòng)人民用他們的智慧創(chuàng)造了這美麗的圖案,瞧,這是古代園林的窗格圖,里面的圖形可豐富了!課后用你的雙眼仔細(xì)觀察,長(zhǎng)大以后,創(chuàng)造更美好的生活!謝謝大家!
    多邊形的內(nèi)角和教案篇十二
    教學(xué)目標(biāo):
    1、經(jīng)歷認(rèn)識(shí)多邊形的過程,能夠初步認(rèn)識(shí)四邊形、五邊形、六邊形等平面圖形。
    2、進(jìn)一步增強(qiáng)動(dòng)手操作能力、語(yǔ)言表達(dá)能力和發(fā)散思維能力。
    3、在學(xué)習(xí)活動(dòng)中增強(qiáng)對(duì)數(shù)學(xué)的興趣,培養(yǎng)交往、合作意識(shí)。
    教學(xué)重點(diǎn):讓學(xué)生通過觀察、比較、合作交流等活動(dòng)認(rèn)識(shí)四邊形、五邊形、六邊形等平面圖形。
    教學(xué)難點(diǎn):理解邊的概念明白圖形按邊的數(shù)量分類、命名的意義。
    教學(xué)準(zhǔn)備:教師準(zhǔn)備板書貼圖、多媒體課件、長(zhǎng)方形和正方形的紙各一張。學(xué)生每人準(zhǔn)備長(zhǎng)方形和正方形的紙各一張,8根小棒,一把剪刀。
    教學(xué)過程:一、創(chuàng)設(shè)情境,激起興趣1、談話:小朋友們,今天我們教室里來了一位新朋友,瞧,它是誰(shuí)?(多媒體出示)談話:喜洋洋新蓋的房子里可漂亮了!大家想不想去看看?(多媒體出示圖片)喜洋洋的新房子上藏著許多我們已經(jīng)學(xué)過的圖形,你能認(rèn)出來嗎?(教師指,學(xué)生回答)。今天這節(jié)課呢!我們繼續(xù)來認(rèn)識(shí)圖形。2、談話:為了裝修新房子啊,喜洋洋還買來了這兩種形狀的地磚,瞧!(電腦出示)地磚的面是什么形狀呢?生回答,是:長(zhǎng)方形和正方形。(貼出長(zhǎng)方形和正方形)。
    二、操作觀察,探索新知1、認(rèn)識(shí)四邊形小朋友,長(zhǎng)方形、正方形就像兄弟兩個(gè),他們還有個(gè)共同的名字呢?你們知道嗎?猜猜看?指名幾人猜一猜(四邊形)。你們?yōu)槭裁捶Q它是四邊形呢?指名學(xué)生說。教師贊同學(xué)生的意見,同時(shí)板書“四邊形”。知道長(zhǎng)方形、正方形可以叫四邊形。那好,我們就先一起來數(shù)一數(shù)長(zhǎng)方形的四條邊。(1)操作:請(qǐng)大家拿出長(zhǎng)方形的彩紙,用左手豎直舉在面前。師示范摸一條邊,這就是長(zhǎng)方形的一條邊。請(qǐng)小朋友自己摸一摸、數(shù)一數(shù)長(zhǎng)方形有幾條邊。反饋:你是怎么數(shù)的'?指名2個(gè)學(xué)生上臺(tái)數(shù)。(可能會(huì)有不同的數(shù)法,要肯定有順序數(shù)的一種,同時(shí)強(qiáng)調(diào)要記住第一條在哪里)。跟著電腦一起有順序的數(shù)。
    (2)那正方形呢?你也能來數(shù)一數(shù)正方形有幾條邊嗎?請(qǐng)一人上黑板前指。電腦演示。小結(jié):通過數(shù),我們知道長(zhǎng)方形和正方形各有四條邊,它們都是四邊形。
    2、練一練(1)問:小朋友想一想,我們學(xué)過的圖形里,還有哪個(gè)也是四邊形?
    指名學(xué)生回答(平行四邊形,出示)。(貼出平行四邊形的圖片)。
    (1)認(rèn)一認(rèn)談話:喜洋洋搬運(yùn)時(shí)不小心把瓷磚打破了幾塊,老師選了2塊,把它們的形狀描下來了,看看,它們有幾條邊?是幾邊形呢?(貼出書上的五邊形)你能來指出它們的五條邊嗎?指名上臺(tái)指,第1個(gè)由1人指,第2個(gè)由1人帶領(lǐng)全班一起數(shù)。小結(jié):這兩個(gè)圖形各有五條邊,叫做五邊形。
    (3)搭一搭五邊形和六邊形還有其他樣子的嗎?(有)先請(qǐng)小朋友先認(rèn)真的想一想。操作:請(qǐng)同桌兩個(gè)小朋友一人搭五邊形,一人搭六邊形,看看最少要用多少根小棒?學(xué)生活動(dòng),一組同桌在實(shí)物投影上搭。問一問用了幾根小棒。小結(jié):我們用5根小棒,做五邊形的5條邊,用6根小棒,做六邊形的6條邊,搭出了五邊形和六邊形。小棒收起,推至桌角。
    三、實(shí)踐運(yùn)用,鞏固新知。1、問:我們已經(jīng)認(rèn)識(shí)了四邊形、五邊形和六邊形,現(xiàn)在它們?cè)谝黄鹁蹠?huì)了,你還能分得清嗎?出示第3題。一人讀要求,解釋題意。獨(dú)立在作業(yè)紙上完成。指名回答。
    2、小朋友分得真清楚,它們還會(huì)在一起變魔術(shù)呢。四邊形可以變成五邊形,五邊形可以變成六邊形,六邊形又能變成四邊形,你相信嗎?請(qǐng)小朋友拿出一張長(zhǎng)方形紙,先自己試一試。然后教師電腦屏幕演示,學(xué)生完成填空。
    3、剛才的折紙有趣嗎?再來看,我這里還有一張正方形紙,如果從上面剪去一個(gè)三角形,剩下的是什么圖形呢?猜猜看。(先在腦海里想象一下,它剩下的會(huì)是什么圖形呢?先請(qǐng)小朋友認(rèn)真的想一想。指名回答。那怎樣剪是四邊形,怎樣剪是五邊形呢?請(qǐng)你拿出剪刀,來試一試吧。學(xué)生操作,師挑選好的貼上黑板。
    4、剛才我們活動(dòng)開展的熱熱鬧鬧,現(xiàn)在,我們要來安靜的讀題、做題,能做到嗎?出示第5題。把下面每個(gè)圖形都分成三角形,最少能分成幾個(gè)?審題。這句話里要注意什么?試畫第一個(gè),猜猜看,可以怎么畫,最少分成幾個(gè)三角形?指名回答,師畫。第二、三個(gè)學(xué)生獨(dú)立完成,2人板演,反饋。(優(yōu)化方法)。
    四、全課總結(jié)。通過今天的學(xué)習(xí)你有什么收獲呢?你是怎樣來區(qū)分的呢?猜猜看,還會(huì)有幾邊形呢?我們把這些圖形呢統(tǒng)稱為多邊形。(揭題:認(rèn)識(shí)多邊形)。
    五、作業(yè)布置。
    在生活中有許多這樣的圖形,請(qǐng)小朋友們找一找,并向爸爸媽媽介紹一下。
    多邊形的內(nèi)角和教案篇十三
    本節(jié)課從復(fù)習(xí)舊知入手,在引課時(shí)提問三角形的相關(guān)知識(shí),讓學(xué)生在思想上對(duì)本節(jié)課產(chǎn)生興趣,并且會(huì)覺得知識(shí)點(diǎn)不是很難,提高學(xué)生的學(xué)習(xí)興趣,同時(shí)加強(qiáng)了數(shù)學(xué)與實(shí)際生活的聯(lián)系,讓學(xué)生感到數(shù)學(xué)離自己很近,激發(fā)了學(xué)生的求知欲,創(chuàng)設(shè)了良好的教學(xué)氛圍。其次注重讓學(xué)生在學(xué)習(xí)活動(dòng)中領(lǐng)悟數(shù)學(xué)思想方法。數(shù)學(xué)的思想方法比有限的數(shù)學(xué)知識(shí)更為重要。學(xué)生在探索多邊形內(nèi)角和的過程中先把五邊形轉(zhuǎn)化成三角形.進(jìn)而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學(xué)中適時(shí)的.利用問題加以引導(dǎo),使學(xué)生領(lǐng)會(huì)數(shù)學(xué)思想方法,真正理解和掌握數(shù)學(xué)的知識(shí)、技能,增強(qiáng)空間觀念及數(shù)學(xué)思考能力培養(yǎng),并獲得數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。同時(shí),恰當(dāng)?shù)氖褂谜n件擴(kuò)大了課堂容量,使課堂教學(xué)的深度和廣度都有所提高。交互式電子白板在本節(jié)課中的應(yīng)用更加形象直觀的讓學(xué)生觀察到多邊形的內(nèi)角和,提高了課堂效率,為學(xué)生的探索討論贏得了時(shí)間。同時(shí)也加大了練習(xí)量,有助于學(xué)生知識(shí)可鞏固和提高。
    整節(jié)課學(xué)生的情緒飽滿,思維活躍,在教師適當(dāng)?shù)囊龑?dǎo)下,學(xué)生能夠合作交流和自主探究,成功的探索出了多邊形的內(nèi)角和公式,較好的完成了本節(jié)課的教學(xué)目標(biāo)。
    不足之處:
    1.本節(jié)課給學(xué)生提供的探究思考與交流的時(shí)間比較充足,但展示交流的機(jī)會(huì)不夠充分,并且個(gè)別學(xué)生沒有很好的融入課堂,游離于課本之外。
    2.本節(jié)課學(xué)生小組活動(dòng)的準(zhǔn)備、具體實(shí)施、歸納交流、評(píng)價(jià)等環(huán)節(jié)設(shè)計(jì)不夠完善。
    多邊形的內(nèi)角和教案篇十四
    課件要具有可教性。制作多媒體課件的目的是優(yōu)化課堂教學(xué)結(jié)構(gòu),提高課堂教學(xué)效率,既要有利于教師的教,又要有利于學(xué)生的學(xué),所以制作的課件要與課堂內(nèi)容有密切聯(lián)系,具有教導(dǎo)積極向上意義。
    [教學(xué)目標(biāo)]。
    1.了解多邊形及有關(guān)概念,理解正多邊形及其有關(guān)概念.。
    2.區(qū)別凸多邊形與凹多邊形.。
    [教學(xué)重點(diǎn)、難點(diǎn)]。
    1.重點(diǎn):
    (1)了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念.。
    (2)區(qū)別凸多邊形和凹多邊形.。
    2.難點(diǎn):
    [教學(xué)過程]。
    一、新課講授。
    投影:圖形見課本p84圖7.3一l.。
    你能從投影里找出幾個(gè)由一些線段圍成的圖形嗎?
    上面三圖中讓同學(xué)邊看、邊議.。
    在同學(xué)議論的基礎(chǔ)上,老師給以總結(jié),這些線段圍成的圖形有何特性?
    (1)它們?cè)谕黄矫鎯?nèi).。
    (2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.。
    這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
    提問:三角形的定義.。
    你能仿照三角形的定義給多邊形定義嗎?
    1.在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形.。
    如果一個(gè)多邊形由n條線段組成,那么這個(gè)多邊形叫做n邊形.(一個(gè)多邊形由幾條線段組成,就叫做幾邊形.)。
    2.多邊形的邊、頂點(diǎn)、內(nèi)角和外角.。
    連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.。
    讓學(xué)生畫出五邊形的所有對(duì)角線.。
    4.凸多邊形與凹多邊形。
    看投影:圖形見課本p85.7.3?6.。
    5.正多邊形。
    由正方形的特征出發(fā),得出正多邊形的概念.。
    各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形.。
    二、課堂練習(xí)。
    課本p86練習(xí)1.2.。
    三、課堂小結(jié)。
    引導(dǎo)學(xué)生總結(jié)本節(jié)課的相關(guān)概念.。
    四、課后作業(yè)。
    課本p90第1題.。
    備用題:
    一、.。
    1.由四條線段首尾順次相接組成的圖形叫四邊形.()。
    2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()。
    3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個(gè)圖形都在這直線的同一側(cè),叫做四邊形.()。
    4.在同一平面內(nèi),四條線段首尾順次連接組成的圖形叫四邊形.()。