平方差公式教學(xué)設(shè)計(jì)(通用17篇)

字號(hào):

    當(dāng)代人們的生活離不開科技,高科技給人們的生活帶來了便利。寫總結(jié)時(shí)要避免主觀性和片面性的評(píng)價(jià),要以客觀事實(shí)和真實(shí)體驗(yàn)為依據(jù)。以下是小編整理的一些寫作總結(jié)的范文,希望能夠幫到你。
    平方差公式教學(xué)設(shè)計(jì)篇一
    學(xué)習(xí)方法:歸納、概括、總結(jié)。
    創(chuàng)設(shè)問題情境,引入新課。
    在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
    如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
    1、請(qǐng)看乘法公式。
    (a+b)(a-b)=a2-b2(1)。
    左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是。
    a2-b2=(a+b)(a-b)(2)。
    利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
    a2-b2=(a+b)(a-b)。
    如x2-16。
    =(x)2-42。
    =(x+4)(x-4)。
    9m2-4n2。
    =(3m)2-(2n)2。
    =(3m+2n)(3m-2n)。
    例1、把下列各式分解因式:
    例2、把下列各式分解因式:。
    (1)9(m+n)2-(m-n)2;(2)2x3-8x.
    補(bǔ)充例題:判斷下列分解因式是否正確。
    (1)(a+b)2-c2=a2+2ab+b2-c2.
    (2)a4-1=(a2)2-1=(a2+1)(a2-1)。
    1、教科書習(xí)題。
    2、分解因式:x4-16x3-4x4x2-(y-z)2。
    3、若x2-y2=30,x-y=-5求x+y。
    平方差公式教學(xué)設(shè)計(jì)篇二
    一、教學(xué)目標(biāo):
    1、使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;
    2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí);
    在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
    3、二、重點(diǎn)、難點(diǎn):
    重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。
    三、教學(xué)方法。
    以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
    四、教學(xué)過程。
    (一)創(chuàng)設(shè)問題情境,引入新課。
    1、你會(huì)做嗎?
    (1)(x+1)(x-1)=_____=()()。
    (3)(3x+2)(3x-2)=_____=()()。
    2、能否用簡便方法運(yùn)算:59.8×60.2(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。
    交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:
    (合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)。
    我們把(a+b)(a-b)=a-b叫做乘法的平方差公式。再遇到類似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語言敘述公式,并讓學(xué)生熟記。)。
    (三)嘗試探究。
    例1計(jì)算:
    (1)(2x+y)(2x-y)。
    (2)(-5a+3b)(-5a-3b)。
    解:(2x+y)(2x-y)。
    解:(-5a+3b)(-5a-3b)。
    =(2x)-y=(-5a)-(3b)=4x-y=25a-3b。
    (教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。)。
    (1)99×101。
    (2)59.8×60.222。
    222。
    解:99×101。
    解:59.8×60.2=(100+1)(100-1)。
    =(60+0.2)(60-0.2)。
    =(100)-(1)。
    =(60)-(0.2)2。
    2=9999。
    =3599.96(教師引導(dǎo),學(xué)生發(fā)現(xiàn),運(yùn)用平方差公式進(jìn)行計(jì)算。)。
    (四)鞏固練習(xí)。
    (l)(x+a)(x-a)。
    (2)(m+n)(m-n)(3)(a+3b)(a-3b)。
    (4)(1-5y)(l+5y)(5)998×1002。
    (6)395×4052、直接寫出答案:
    (l)(-a+b)(a+b)。
    (2)(a-b)(b+a)。
    (3)(-a-b)(-a+b)。
    (4)(a-b)(-a-b)(5)999×1001。
    (6)39.8×40.2(讓學(xué)生獨(dú)立完成,互評(píng)互改.)。
    (五)小結(jié)。
    2.運(yùn)用公式要注意什么?
    (1)要符合公式特征才能運(yùn)用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。
    (學(xué)生回答,教師總結(jié))。
    (六)作業(yè)。
    p106習(xí)題1-5題。
    七、板書設(shè)計(jì):
    (1)(2x+y)(2x-y)。
    (2)(-5a+3b)(-5a-3b)。
    解:(2x+y)(2x-y)。
    解:(-5a+3b)(-5a-3b)。
    =(2x)-y=(-5a)-(3b)=4x-y=25a-3b例2用平方差計(jì)算:
    (1)99×101。
    (2)59.8×60.2。
    解:99×101。
    解:59.8×60.2=(100+1)(100-1)。
    =(60+0.2)(60-0.2)。
    =(100)-(1)。
    =(60)-(0.2)2。
    22222。
    =9999。
    =3599.96。
    教學(xué)反思。
    通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過于注重“收”,而“放”不夠。
    平方差公式教學(xué)設(shè)計(jì)篇三
    學(xué)生已經(jīng)掌握了多項(xiàng)式與多項(xiàng)式相乘,但是對(duì)于某些特殊的多項(xiàng)式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點(diǎn)內(nèi)容之一。
    平方差公式是第一個(gè)乘法公式,教學(xué)時(shí),我是這樣引入新課的,先計(jì)算下列各題,看誰做的又對(duì)又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學(xué)生的好勝心并為進(jìn)一步探索新知搭建好有力的平臺(tái),然后我又讓學(xué)生討論交流上面幾個(gè)等式左、右兩邊各有什么特點(diǎn),你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個(gè)規(guī)律嗎?給學(xué)生充分的觀察、分析、討論交流的時(shí)間,老師應(yīng)及時(shí)的給與必要的指導(dǎo)、鼓勵(lì)和由衷的贊美,這一點(diǎn)我做的還很不夠,今后要多多注意。
    然后我有設(shè)計(jì)了這樣一道題:下列多項(xiàng)式乘法中可以用平方差公式計(jì)算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學(xué)生理解公式的特征,掌握公式的。特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
    平方差公式教學(xué)設(shè)計(jì)篇四
    學(xué)習(xí)目標(biāo):
    1、能推導(dǎo)平方差公式,并會(huì)用幾何圖形解釋公式;。
    3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號(hào)感,體會(huì)“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律.
    學(xué)習(xí)重難點(diǎn):
    難點(diǎn):探索平方差公式,并用幾何圖形解釋公式.
    學(xué)習(xí)過程:
    一、自主探索。
    1、計(jì)算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
    (3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
    2、觀察以上算式及其運(yùn)算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).
    3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?
    (1)、公式左邊的兩個(gè)因式都是二項(xiàng)式。必須是相同的兩數(shù)的和與差?;蛘哒f兩個(gè)二項(xiàng)式必須有一項(xiàng)完全相同,另一項(xiàng)只有符號(hào)不同。
    (2)、公式中的a與b可以是數(shù),也可以換成一個(gè)代數(shù)式。
    二、試一試。
    平方差公式教學(xué)設(shè)計(jì)篇五
    1、進(jìn)一步提高分析,解決問題的能力。
    2、學(xué)會(huì)條件整理,明晰解題思路。
    3、理解設(shè)間接未知數(shù)的意義。
    1、學(xué)會(huì)用列表格或畫圖法分析題目,理順關(guān)系,使得各種數(shù)量關(guān)系一目了然,具有直觀易懂的優(yōu)點(diǎn),避免了因數(shù)據(jù)多,關(guān)系復(fù)雜而混淆不清。
    2、當(dāng)直接設(shè)未知數(shù)時(shí)難于列出方程或找到相關(guān)的等量關(guān)系,我們可采取用間接設(shè)未知數(shù)的辦法。
    問題設(shè)疑:從a到長青化工廠,鐵路走多少公里?公路走多少公里?
    從長青化工廠到b,鐵路走多少公里?公路走多少公里?
    鐵路每噸千米運(yùn)價(jià)是多少?公路每噸千米運(yùn)價(jià)是多少?
    兩次運(yùn)輸總支出為多少元?
    分析:銷售款與產(chǎn)品數(shù)量有關(guān),原料費(fèi)與原料數(shù)量有關(guān),設(shè)產(chǎn)品重噸,原料重噸,根據(jù)題中數(shù)量關(guān)系填定下表:
    產(chǎn)品噸。
    原料噸。
    合計(jì)。
    公路運(yùn)費(fèi)(元)。
    鐵路運(yùn)費(fèi)(元)。
    價(jià)值(元)。
    題目所求數(shù)值是,為此需先解出與。
    由上表,列方程組。
    解這個(gè)方程組,得。
    因此,這批產(chǎn)品的銷售款比原料費(fèi)與運(yùn)輸費(fèi)的和多元。
    1七年級(jí)某班同學(xué)參加平整土地勞動(dòng),運(yùn)土人數(shù)比挖土人數(shù)的一半多3人,若從挖土人員中抽出6人去運(yùn)土,則兩者人數(shù)相等,原來有運(yùn)土________人,挖土_______人。
    2、足球比賽的計(jì)分規(guī)則為勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分,一個(gè)隊(duì)打11場(chǎng),負(fù)3場(chǎng),共得16分,那么這個(gè)隊(duì)勝了______場(chǎng)。
    當(dāng)堂檢測(cè)題。
    1、學(xué)校的籃球數(shù)比排球數(shù)的2倍少3個(gè),足球數(shù)與排球數(shù)的比是2:3,三種球共41個(gè),則籃球有_______個(gè),排球有______個(gè),足球有_______個(gè)。
    2、已知梯形的面積是28平方厘米,高是4厘米,它的下底比上底的2倍少1厘米,則梯形的上、下底分別是____________。
    3、小兵最近購買了兩種三年期債券5000元,甲種年利率為5.8%,乙種年利率為6%,三年后共可得到利息888元,則他購甲種債券________元,乙種債券_______元。
    4、甲對(duì)乙風(fēng)趣地說:“我像你這樣大歲數(shù)的那年,你才2歲;而你像我這樣大歲數(shù)的那年,我已經(jīng)38歲了?!眲t甲、乙兩人現(xiàn)在的歲數(shù)分別是_______。
    5、某商店為了處理積壓商品,實(shí)行虧本銷售,已知購進(jìn)的甲、乙商品原價(jià)共為880元,甲種商品按原價(jià)打8折,乙種商品按原價(jià)打七五折,結(jié)果兩種商品共虧196元,則甲、乙商品的原價(jià)分別為()。
    a、400元,480元b、480元,400元。
    c、360元,300元d、300元,360元。
    平方差公式教學(xué)設(shè)計(jì)篇六
    :1、進(jìn)一步提高分析,解決問題的能力。
    2、學(xué)會(huì)條件整理,明晰解題思路。
    3、運(yùn)用二元一次方程解決有關(guān)配套與設(shè)計(jì)的應(yīng)用題。
    配套的關(guān)鍵在于:做上衣和做褲子的條數(shù)是相等的(也可以理解為相等數(shù)量關(guān)系)。
    另一相等關(guān)系體現(xiàn)在:做上衣和做褲子的布料之和為600米。
    甲乙兩種作物的單位面積產(chǎn)量的比是1:1.5是什么意思?
    甲、乙兩種作物的總產(chǎn)量的比是3:4是什么意思?
    本題有哪些等量關(guān)系?
    解這個(gè)方程組,得。
    過長方形土地的長邊上離一端約處,把這塊土地分為兩塊長方形土地,較大一塊土地種種作物。較小一塊土地種種作物。
    當(dāng)堂檢測(cè)題。
    拉機(jī)每天耕地畝,可列方程組。
    2、某校運(yùn)動(dòng)員分組訓(xùn)練,若每組7人余3人,若每組8人,則缺5人,設(shè)運(yùn)動(dòng)員人數(shù)為人,組數(shù)為組,則列方程組()。
    a、b、c、d、
    3、某地區(qū)“退耕還林”后,耕地面積和林地面積共180平方千米,耕地面積是林地面積的25%,設(shè)耕地面積為平方千米,林地面積為平方千米,根據(jù)題意,可得方程組()。
    a、b、c、d、
    4、某人身上只有2元和5元兩種紙幣,他買一件物品需支付27元,則付款的方法有()。
    a、1種b、2種c、3種d、4種。
    5、如圖,一個(gè)長形,它的長減少4厘米,寬增加2厘米,所得的是一正方形,它的面積與原長方形的面積等,求原長方形的長和寬。
    平方差公式教學(xué)設(shè)計(jì)篇七
    三、教學(xué)目標(biāo)。
    通過幾方面的合力,提高學(xué)生歸納概括、邏輯推理等核心素養(yǎng)水平.。
    四、教學(xué)重難點(diǎn)。
    五、信息技術(shù)應(yīng)用思路。
    1.本課運(yùn)用了信息技術(shù)輔助教學(xué),主要使用的技術(shù)有:ppt課件、幾何畫板.。
    (一)創(chuàng)設(shè)情境,導(dǎo)入課題。
    你能用簡便的方法計(jì)算出它的面積嗎?看誰算得快:
    師生活動(dòng):學(xué)生欣賞圖片,感受生活中的數(shù)學(xué)問題,并進(jìn)行生活中的數(shù)學(xué)向數(shù)學(xué)模型轉(zhuǎn)換.。
    (二)探索新知,嘗試發(fā)現(xiàn)。
    計(jì)算下列多項(xiàng)式的積,你能發(fā)現(xiàn)什么規(guī)律?
    (1)(m+1)(m-1)=;
    (2)(5+x)(5-x)=;
    (3)(2x+1)(2x-1)=.。
    師生活動(dòng):學(xué)生在教師的引導(dǎo)下,通過小組討論探究,進(jìn)行多項(xiàng)式的乘法,計(jì)算出結(jié)論.。
    信息技術(shù)支持:ppt動(dòng)畫演示.。
    結(jié)論是一個(gè)平方減去另一個(gè)平方的形式,效果十分鮮明.。
    (三)總結(jié)歸納,發(fā)現(xiàn)新知。
    問題3:依照以上三道題的計(jì)算回答下列問題:
    (1)式子的左邊具有什么共同特征?
    (2)它們的結(jié)果有什么特征?
    (3)能不能用字母表示你的發(fā)現(xiàn)?
    問題4:你能用文字語言表示所發(fā)現(xiàn)的規(guī)律嗎?
    (四)數(shù)形結(jié)合,幾何說理。
    提示:a2-b2與(a+b)(a-b)都可表示該圖形的面積.。
    (五)剖析公式,發(fā)現(xiàn)本質(zhì)。
    (六)鞏固運(yùn)用,內(nèi)化新知。
    問題6:判斷下列算式能否運(yùn)用平方差公式計(jì)算:
    (1)(2x+3a)(2x–3b);
    (2)(-m+n)(m-n).。
    (1)(3x+2y)(3x-2y);
    (2)(-7+2m2)(-7-2m2).。
    信息技術(shù)支持:ppt展示書寫步驟,有利于節(jié)省時(shí)間,提高效率,規(guī)范學(xué)生書寫.。
    (七)拓展應(yīng)用,強(qiáng)化思維。
    問題8:利用平方差公式計(jì)算情景導(dǎo)航中提出的問題:
    信息技術(shù)支持:ppt展示書寫步驟,有利于節(jié)省時(shí)間.。
    (八)總結(jié)概括,自我評(píng)價(jià)。
    問題10:這節(jié)課你有哪些收獲?還有什么困惑?
    提示:從知識(shí)和情感態(tài)度兩個(gè)方面加以小結(jié).。
    師生活動(dòng):使學(xué)生對(duì)本節(jié)課的知識(shí)有一個(gè)系統(tǒng)全面的認(rèn)識(shí),分組討論后交流.。
    (九)課后作業(yè)。
    1.必做題:課本p36習(xí)題2.1a組1、2.。
    2.選做題:課本p36習(xí)題2.1b組1、2.。
    作業(yè)分層處理有較大的彈性,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,尊重學(xué)生的個(gè)體差異.。
    七、教學(xué)反思。
    平方差公式教學(xué)設(shè)計(jì)篇八
    平方差公式與完全平方公式是初中數(shù)學(xué)代數(shù)學(xué)知識(shí)方面應(yīng)用最廣泛的公式,也是學(xué)生代數(shù)運(yùn)算的基礎(chǔ)公式,在今后的數(shù)學(xué)學(xué)習(xí)過程中,更能體現(xiàn)其重要性,所以這兩個(gè)公式的教學(xué)要求很高,需要每一名學(xué)生都必須熟練掌握這兩個(gè)公式,并因此可以靈活運(yùn)用公式進(jìn)行因式分解和分解因式,解決很多代數(shù)問題。
    如同勾股定理在全世界數(shù)學(xué)基礎(chǔ)教學(xué)中地位顯著,全世界各地?cái)?shù)學(xué)教科書都要求學(xué)生掌握一樣,平方差公式與完全平方公式也是全世界以致全國各地教科書都必講必學(xué)的內(nèi)容之一,作為整式的乘法公式,人教版教科書把平方差公式與完全平方公式安排在整式的乘法這一章的第二節(jié),在第一節(jié)內(nèi)容上先讓學(xué)生掌握整式乘法的各項(xiàng)法則,當(dāng)學(xué)生熟練掌握多項(xiàng)式與多項(xiàng)式的乘法后,再由此讓學(xué)生來學(xué)生我們的乘法公式,本節(jié)內(nèi)容分兩部分,先介紹平方差公式,再介紹完全平方公式。
    在學(xué)生熟練掌握多項(xiàng)式與多項(xiàng)式的乘法后,開始介紹平方差公式,教科書上是由找規(guī)律開始,讓學(xué)生利用多項(xiàng)式乘法法則計(jì)算,從而發(fā)現(xiàn)平方差公式,由找規(guī)律得出公式的猜想,再介紹平方差公式的幾何面積驗(yàn)證方法,來驗(yàn)證公式猜想的正確性,從而由代數(shù)探究及幾何論證來得出平方差公式,得出公式后再來實(shí)際應(yīng)用。
    我一直嚴(yán)格要求自己,認(rèn)真?zhèn)浣滩?,?dāng)然也認(rèn)真?zhèn)鋵W(xué)生,使課堂教學(xué)符合學(xué)生的實(shí)際需要。學(xué)生基礎(chǔ)較差,教學(xué)內(nèi)容要求生動(dòng)、易學(xué)易懂,讓學(xué)生能在活動(dòng)教學(xué)中進(jìn)行簡單探究從而掌握好基礎(chǔ)知識(shí)。,我認(rèn)真準(zhǔn)備,仔細(xì)研讀教材,精心制作出課件和教案,按教科書的教學(xué)順序和過程,既安排學(xué)生計(jì)算上的運(yùn)算探究猜想,又安排幾何實(shí)踐剪紙法,利用面積來驗(yàn)證公式。我從實(shí)際問題出發(fā),給出動(dòng)手操作的實(shí)際幾何問題引出本課,得出平方差公式的猜想,讓學(xué)生動(dòng)手實(shí)踐,數(shù)形結(jié)合得出平方差公式,在利用多項(xiàng)式的乘法法則計(jì)算驗(yàn)證,最后辨析、應(yīng)用,讓學(xué)生熟悉平方差公式,最后應(yīng)用提高,給出實(shí)際生活中的一個(gè)問題,利用平方差公式計(jì)算較大的數(shù)字,讓學(xué)生明白學(xué)習(xí),平方差公式不但可以在實(shí)際生活中運(yùn)用,而且還可以簡便計(jì)算,激發(fā)學(xué)生對(duì)平方差公式學(xué)習(xí)的興趣,從而很好地掌握好平方差公式。最后再進(jìn)行小結(jié),反饋。
    平方差公式教學(xué)設(shè)計(jì)篇九
    《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個(gè)課題,對(duì)大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實(shí)”是我追求的目標(biāo)。為此,我作了如下努力:
    1、把數(shù)學(xué)問題“蘊(yùn)藏”在游戲中。
    導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個(gè)智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進(jìn)行試驗(yàn)操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗(yàn)證自己的猜想,同時(shí)也感受和認(rèn)識(shí)知識(shí)的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會(huì)到,只要我們給學(xué)生創(chuàng)造一個(gè)自由活動(dòng)的空間,學(xué)生便會(huì)還給我們一個(gè)意外的驚喜。
    2、充分重視“自主、合作、探究”的教學(xué)方式的運(yùn)用。
    把探究的機(jī)會(huì)留給學(xué)生,讓學(xué)生在動(dòng)腦思考中構(gòu)建知識(shí),真正成為教學(xué)活動(dòng)的主體。使他們?cè)诨顒?dòng)中進(jìn)行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對(duì)規(guī)律的理解。學(xué)生對(duì)知識(shí)的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對(duì)性強(qiáng)的有效訓(xùn)練,讓學(xué)生對(duì)所學(xué)知識(shí)建立初步的表象,以達(dá)到對(duì)知識(shí)的理解、掌握及應(yīng)用,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華。在此設(shè)計(jì)了三個(gè)層次的有效訓(xùn)練,讓學(xué)生體會(huì)平方差公式的特點(diǎn):第一層次是直接運(yùn)用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個(gè)層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運(yùn)用技巧。
    3、自置懸念,享受成功。
    以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計(jì)了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評(píng)價(jià)結(jié)果都對(duì)了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個(gè)學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
    4、切實(shí)落在實(shí)效上。
    本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺(tái)講解、作業(yè)實(shí)物投影的方式來進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動(dòng)、師生互動(dòng)解決問題,實(shí)現(xiàn)問題及時(shí)處理,學(xué)習(xí)效果不錯(cuò)。
    5、值得注意的是:
    1、節(jié)奏的把握上。
    這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計(jì)算方法等問題上,花了不少時(shí)間,節(jié)奏把握的不是很好。
    2、充分發(fā)揮學(xué)生的主體地位上。
    這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實(shí)的好。
    平方差公式教學(xué)設(shè)計(jì)篇十
    總第課時(shí)。
    練習(xí)課。
    這一章的學(xué)習(xí),使學(xué)生掌握二元一次方程組的解法。
    2、學(xué)會(huì)解決實(shí)際問題,分析問題能力有所提高。
    這一章的知識(shí)點(diǎn),數(shù)學(xué)方法思想。
    實(shí)際應(yīng)用問題中的等量關(guān)系。
    方法講練結(jié)合、探索交流課型新授課教具投影儀。
    方案一基本練習(xí)題。
    1、下列各組x,y的值是不是二元一次方程組的解?
    (1)(2)(3)。
    2、根據(jù)下表中所給的x值以及x與y的關(guān)系式,求出相應(yīng)的y值,然后填入表內(nèi):
    x12345678910。
    y=4x。
    y=10-x。
    根據(jù)上表找出二元一次方程組的的解。
    3、已知二元一次方程組的解。
    求a,b的值。
    4、解二元一次方程。
    (1)(2)。
    1.根據(jù)已知條件,求出y的值,分別填入下列各圖中,并找出方程組的解。
    2.寫出一個(gè)二元一次方程,使得都是它的解,并且求出x=3時(shí)的方程的解。
    3.已知三角形的周長是18cm,其中兩邊的和等于第三邊的2倍,而這兩邊的差等與第三邊的,求這個(gè)三角形的各邊長。
    設(shè)三邊的長分別是xcm,ycm,zcm。
    那么你會(huì)解這個(gè)方程組嗎?
    2、甲、乙兩地之間路程為20km,a,b兩人同時(shí)相對(duì)而行,2小時(shí)后相遇,相遇后a就返回甲地,b仍向甲地前進(jìn),a回到甲地時(shí),b離甲地還有2km,求a,b兩人速度。
    教學(xué)素材:
    a組題:
    1.已知x+y+(x-y+3)2=0,求x,y的值。
    2.若3m-2n-7=0,則6n-9m-6是多少?
    3.解方程組。
    (1)。
    (2)。
    5、給定兩數(shù)5與3,編一道通過列出二元一次方程組來求解的應(yīng)用題,并使得這個(gè)方程的解就是這兩個(gè)數(shù)。
    b組題:
    1、某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場(chǎng)上直接銷售,每噸可獲取利潤500元,制成酸奶銷售,每噸可獲利潤1200元,制成奶片銷售,每噸可獲利潤2000元,該工廠的生產(chǎn)能力為:如制成酸奶,每天可加工3噸,制成奶片每天可加工1噸,受人員限制,兩種加工方式不能同時(shí)進(jìn)行,受氣溫條件限制,這批牛奶必須在4天內(nèi)全部銷售或加工完畢,為此,該加工廠設(shè)計(jì)了兩種可行性方案:
    方案一:盡可能多的制成奶片,其余直接銷售鮮牛奶。
    方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成。
    你認(rèn)為選擇哪種方案獲利最多,為什么。
    (1)甲把a(bǔ)看成了什么,乙把b看成了什么。
    (2)求出原方程組的正確解。
    學(xué)生充分發(fā)表意見再根據(jù)學(xué)生的意見采用方法。
    學(xué)生板演。
    作業(yè)p103910。
    p1241314。
    板書設(shè)計(jì)。
    方案一方案二方案三。
    平方差公式教學(xué)設(shè)計(jì)篇十一
    (4)(+3z)(—3z)=_____。
    (1)(x+1)(1+x),
    (2)(2x+)(—2x),
    (3)(a—b)(—a+b),
    (4)(—a—b)(—a+b)。
    幫助學(xué)生理解公式的特征,掌握公式的特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
    平方差公式教學(xué)設(shè)計(jì)篇十二
    教師講課語言清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。
    乘法公式的引入,使學(xué)生既復(fù)習(xí)了多項(xiàng)式的乘法運(yùn)算,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。課堂教學(xué)中充分體現(xiàn)了以點(diǎn)撥為主的教學(xué)。對(duì)于公式的性能嚴(yán)格要求學(xué)生理解,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。
    一點(diǎn)建議:
    1、引入時(shí),還可以安排得生動(dòng)一點(diǎn),可以先設(shè)疑,提出問題,讓學(xué)生探討,猜想,歸納,以激發(fā)學(xué)生更高的學(xué)習(xí)興趣,或采用多題的多項(xiàng)式乘法運(yùn)算,當(dāng)學(xué)生感到有些“煩“時(shí),讓學(xué)生猜想這類運(yùn)算能否運(yùn)用簡單的結(jié)論來得出,從而使學(xué)生感到今天要學(xué)的內(nèi)容的重要性,這樣學(xué)生的學(xué)習(xí)將更主動(dòng)。
    2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時(shí),未能用簡練的語言描述出特征,以致學(xué)生在完成例題和練習(xí)題的過程中,對(duì)在運(yùn)用公式之前需要變型的題型,出錯(cuò)率較高。其實(shí)平方差公式的特征就是有兩項(xiàng)相同,而另兩項(xiàng)恰恰是互為相反數(shù)或項(xiàng)。相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同項(xiàng)的平方減去相反項(xiàng)的平方。
    3、對(duì)于平方差公式的幾何意義,敢于讓學(xué)生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學(xué)生弄懂。這時(shí)我們老師應(yīng)該給出恰當(dāng)準(zhǔn)確的解釋。
    以上是我的淺顯認(rèn)識(shí),不妥之處,還望楊老師海涵,大家批評(píng)。
    平方差公式教學(xué)設(shè)計(jì)篇十三
    前不久聽了我校朱昌榮老師的一節(jié)數(shù)學(xué)課,這節(jié)課是朱老師安排的一節(jié)乘法公式——平方差公式的新授課,這節(jié)課給我留下了深刻的影響。
    教師講課語言清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。
    乘法公式的引入,使學(xué)生既復(fù)習(xí)了多項(xiàng)式的乘法運(yùn)算,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。課堂教學(xué)中充分體現(xiàn)了以點(diǎn)撥為主的教學(xué)。對(duì)于公式的性能嚴(yán)格要求學(xué)生理解,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。
    一點(diǎn)建議:
    1、引入時(shí),還可以安排得生動(dòng)一點(diǎn),可以先設(shè)疑,提出問題,讓學(xué)生探討,猜想,歸納,以激發(fā)學(xué)生更高的學(xué)習(xí)興趣,或采用多題的多項(xiàng)式乘法運(yùn)算,當(dāng)學(xué)生感到有些“煩“時(shí),讓學(xué)生猜想這類運(yùn)算能否運(yùn)用簡單的結(jié)論來得出,從而使學(xué)生感到今天要學(xué)的內(nèi)容的重要性,這樣學(xué)生的學(xué)習(xí)將更主動(dòng)。
    2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時(shí),未能用簡練的語言描述出特征,以致學(xué)生在完成例題和練習(xí)題的過程中,對(duì)在運(yùn)用公式之前需要變型的題型,出錯(cuò)率較高。其實(shí)平方差公式的特征就是有兩項(xiàng)相同,而另兩項(xiàng)恰恰是互為相反數(shù)或項(xiàng)。相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同項(xiàng)的平方減去相反項(xiàng)的平方。
    3、對(duì)于平方差公式的幾何意義,敢于讓學(xué)生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學(xué)生弄懂。這時(shí)我們老師應(yīng)該給出恰當(dāng)準(zhǔn)確的解釋。
    以上是我的淺顯認(rèn)識(shí),不妥之處,還望朱老師海涵,大家批評(píng)。
    謝謝。
    平方差公式教學(xué)設(shè)計(jì)篇十四
    導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,首先是一個(gè)智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進(jìn)行試驗(yàn)操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗(yàn)證自己的猜想,同時(shí)也感受和認(rèn)識(shí)知識(shí)的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會(huì)到,只要我們給學(xué)生創(chuàng)造一個(gè)自由活動(dòng)的空間,學(xué)生便會(huì)還給我們一個(gè)意外的驚喜。
    把探究的機(jī)會(huì)留給學(xué)生,讓學(xué)生在動(dòng)腦思考中構(gòu)建知識(shí),真正成為教學(xué)活動(dòng)的主體。使他們?cè)诨顒?dòng)中進(jìn)行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對(duì)規(guī)律的理解。學(xué)生對(duì)知識(shí)的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對(duì)性強(qiáng)的有效訓(xùn)練,讓學(xué)生對(duì)所學(xué)知識(shí)建立初步的表象,以達(dá)到對(duì)知識(shí)的理解、掌握及應(yīng)用,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華。在此設(shè)計(jì)了三個(gè)層次的有效訓(xùn)練,讓學(xué)生體會(huì)平方差公式的特點(diǎn):第一層次是直接運(yùn)用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個(gè)層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運(yùn)用技巧。
    以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計(jì)了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評(píng)價(jià)結(jié)果都對(duì)了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個(gè)學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
    本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺(tái)講解、作業(yè)實(shí)物投影的方式來進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動(dòng)、師生互動(dòng)解決問題,實(shí)現(xiàn)問題及時(shí)處理,學(xué)習(xí)效果不錯(cuò)。
    1、節(jié)奏的把握上。
    這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計(jì)算方法等問題上,花了不少時(shí)間,節(jié)奏把握的不是很好。
    2、充分發(fā)揮學(xué)生的主體地位上。
    這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實(shí)的好。
    平方差公式教學(xué)設(shè)計(jì)篇十五
    指導(dǎo)學(xué)生用語言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個(gè)公式叫做平方差公式。
    指導(dǎo)學(xué)生發(fā)現(xiàn)公式的特點(diǎn):
    1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個(gè)二項(xiàng)式的積,在這兩個(gè)二項(xiàng)式中有一項(xiàng)(a)完全相同,另一項(xiàng)(b與-b)互為相反數(shù)。右邊為這兩個(gè)數(shù)的平方差即完全相同的項(xiàng)的平方減去符號(hào)相反的平方。
    2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項(xiàng)式,多項(xiàng)式等代數(shù)式。
    提醒學(xué)生利用平方公式計(jì)算,首先觀察是否符合公式的特點(diǎn),這兩個(gè)數(shù)分別是什么,其次要區(qū)別相同的項(xiàng)和相反的項(xiàng),表示兩數(shù)平方差時(shí)要加括號(hào)。
    平方差公式教學(xué)設(shè)計(jì)篇十六
    《平方差公式》這一節(jié)重點(diǎn)和難點(diǎn)就在于結(jié)構(gòu)的不變性和字母的可變性。因此我的教學(xué)設(shè)計(jì)思想是從讓每一位學(xué)生理解和掌握公式結(jié)構(gòu)的不變性和字母的可變性從而達(dá)到熟練運(yùn)用的目的。只是在具體的教學(xué)手段和措施及側(cè)重點(diǎn)上有所區(qū)別。雖然如此,我個(gè)人認(rèn)為基本目標(biāo)已經(jīng)達(dá)到,也取得了初步成效,尤其是對(duì)易錯(cuò)點(diǎn)的側(cè)重讓學(xué)生記憶深刻效果更明顯。
    具體來說,成功之處我們都基本實(shí)現(xiàn)了教學(xué)目標(biāo),突出了教學(xué)重難點(diǎn),教學(xué)過程環(huán)環(huán)相扣,題目設(shè)計(jì)逐層深入,及時(shí)反饋學(xué)習(xí)效果,精講多練。基本實(shí)現(xiàn)了預(yù)想的效果。我自認(rèn)為該課成功之處主要體現(xiàn)在:
    1、課前準(zhǔn)備充分,教學(xué)設(shè)計(jì)合理充實(shí),有很強(qiáng)的實(shí)用性和創(chuàng)造性。
    2、導(dǎo)入新穎,從小故事出發(fā),激發(fā)學(xué)生興趣,給學(xué)生留下懸念,同時(shí)對(duì)平方差公式有了初步的感性認(rèn)識(shí),從而揭示課題。然后再通過一系列的探索和練習(xí)以及公式的幾何解釋,使學(xué)生對(duì)新知識(shí)的理解由感性認(rèn)識(shí)到理性認(rèn)識(shí)的過渡。
    3、選題合理、有針對(duì)性和層次性。在鞏固練習(xí)中通過像(x+y)(x-y)這種簡單的套公式題型逐漸轉(zhuǎn)換到涉及帶負(fù)號(hào)的變式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)這樣的題型,通過各類變式和判斷及找錯(cuò)的題型問題的暴露,及時(shí)處理。使得學(xué)生逐步加深對(duì)公式結(jié)構(gòu)的理解和記憶。然后轉(zhuǎn)回到課前給學(xué)生留下的疑問,最后實(shí)現(xiàn)創(chuàng)新,用簡便方法計(jì)算像2002×1998.使得整個(gè)課堂容量大,充實(shí)。
    進(jìn)的例題練習(xí)讓學(xué)生逐步理解公式中字母的可變性。最后達(dá)到對(duì)公式的全面和深刻的理解和掌握,使公式的運(yùn)用得到升華。
    5、本節(jié)課的重點(diǎn)和難點(diǎn)就是在于結(jié)構(gòu)的不變性和字母的可變性。我就側(cè)重運(yùn)用公式時(shí)的易錯(cuò)點(diǎn)。不僅在訓(xùn)練期間多次強(qiáng)調(diào)的方式提醒學(xué)生易錯(cuò)點(diǎn),相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同相的平方減去相反項(xiàng)的平方,平方時(shí)底是單項(xiàng)式但系數(shù)不是1或底數(shù)是多項(xiàng)式時(shí)不要忘記打上括號(hào),而且在最后的小結(jié)中給學(xué)生總結(jié)更是讓學(xué)生影響深刻。
    6、對(duì)公式進(jìn)行幾何意義的解釋,我通過直觀演示操作,將學(xué)生不易理解的問題,使它變得直觀,從而顯得簡單。
    3、課堂效率有待提高。
    改進(jìn)方向:1、繼續(xù)加強(qiáng)平時(shí)的“生本”理念的灌輸和學(xué)生討論、發(fā)言的培訓(xùn)和鼓勵(lì)。
    2、教學(xué)設(shè)計(jì)時(shí)更全面、深入地考慮學(xué)生的問題也就是備課備學(xué)生。
    3、加強(qiáng)對(duì)學(xué)生發(fā)現(xiàn)問題、總結(jié)規(guī)律、提出疑問等課堂效果體現(xiàn)的關(guān)鍵環(huán)節(jié)。
    的培訓(xùn)。
    4、課堂教學(xué)注重多措施了解學(xué)生學(xué)習(xí)效果的反饋。俗話說:“金無足赤,人無完人”。一節(jié)課上得再好,還是有些問題沒有考慮到,以上四本人的自我剖析,有的地方做的不是很完美,敬請(qǐng)各位同仁批評(píng)指正,本人一定笑納,并表示感謝。
    平方差公式教學(xué)設(shè)計(jì)篇十七
    一、學(xué)習(xí)目標(biāo):
    2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡單的運(yùn)算.
    二、重點(diǎn)難點(diǎn)。
    難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.
    三、合作學(xué)習(xí)。
    你能用簡便方法計(jì)算下列各題嗎?
    12001×19992998×1002。
    導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.
    1x+1x-12m+2m-2。
    32x+12x-14x+5yx-5y。
    結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.
    即:a+ba-b=a2-b2。
    四、精講精練。