平方差公式的教學設(shè)計(匯總18篇)

字號:

    8.總結(jié)可以發(fā)現(xiàn)問題、找到解決辦法和改進措施解決問題的關(guān)鍵在于正確的思維方式和決策能力。以下是小編為大家收集的總結(jié)范文,希望能給大家?guī)硪恍﹩l(fā)。
    平方差公式的教學設(shè)計篇一
    1、進一步提高分析,解決問題的能力。
    2、學會條件整理,明晰解題思路。
    3、理解設(shè)間接未知數(shù)的意義。
    1、學會用列表格或畫圖法分析題目,理順關(guān)系,使得各種數(shù)量關(guān)系一目了然,具有直觀易懂的優(yōu)點,避免了因數(shù)據(jù)多,關(guān)系復雜而混淆不清。
    2、當直接設(shè)未知數(shù)時難于列出方程或找到相關(guān)的等量關(guān)系,我們可采取用間接設(shè)未知數(shù)的辦法。
    問題設(shè)疑:從a到長青化工廠,鐵路走多少公里?公路走多少公里?
    從長青化工廠到b,鐵路走多少公里?公路走多少公里?
    鐵路每噸千米運價是多少?公路每噸千米運價是多少?
    兩次運輸總支出為多少元?
    分析:銷售款與產(chǎn)品數(shù)量有關(guān),原料費與原料數(shù)量有關(guān),設(shè)產(chǎn)品重噸,原料重噸,根據(jù)題中數(shù)量關(guān)系填定下表:
    產(chǎn)品噸。
    原料噸。
    合計。
    公路運費(元)。
    鐵路運費(元)。
    價值(元)。
    題目所求數(shù)值是,為此需先解出與。
    由上表,列方程組。
    解這個方程組,得。
    因此,這批產(chǎn)品的銷售款比原料費與運輸費的和多元。
    1七年級某班同學參加平整土地勞動,運土人數(shù)比挖土人數(shù)的一半多3人,若從挖土人員中抽出6人去運土,則兩者人數(shù)相等,原來有運土________人,挖土_______人。
    2、足球比賽的計分規(guī)則為勝一場得3分,平一場得1分,負一場得0分,一個隊打11場,負3場,共得16分,那么這個隊勝了______場。
    當堂檢測題。
    1、學校的籃球數(shù)比排球數(shù)的2倍少3個,足球數(shù)與排球數(shù)的比是2:3,三種球共41個,則籃球有_______個,排球有______個,足球有_______個。
    2、已知梯形的面積是28平方厘米,高是4厘米,它的下底比上底的2倍少1厘米,則梯形的上、下底分別是____________。
    3、小兵最近購買了兩種三年期債券5000元,甲種年利率為5.8%,乙種年利率為6%,三年后共可得到利息888元,則他購甲種債券________元,乙種債券_______元。
    4、甲對乙風趣地說:“我像你這樣大歲數(shù)的那年,你才2歲;而你像我這樣大歲數(shù)的那年,我已經(jīng)38歲了?!眲t甲、乙兩人現(xiàn)在的歲數(shù)分別是_______。
    5、某商店為了處理積壓商品,實行虧本銷售,已知購進的甲、乙商品原價共為880元,甲種商品按原價打8折,乙種商品按原價打七五折,結(jié)果兩種商品共虧196元,則甲、乙商品的原價分別為()。
    a、400元,480元b、480元,400元。
    c、360元,300元d、300元,360元。
    平方差公式的教學設(shè)計篇二
    本節(jié)課是圍繞“引導學生有效預習”的課題設(shè)計的,通過預設(shè)的問題引發(fā)學生思考,在學生的預習基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。
    讓學生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認識,有助于讓學生在應(yīng)用平方差公式行分解因式時注意到它的前提條件;通過例題練習的鞏固,讓學生把握教材,吃透教材,讓學生更加熟練、準確,起到強化、鞏固的作用,讓學生領(lǐng)會換元的思想,達到初步發(fā)展學生綜合應(yīng)用的能力。
    本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎(chǔ)上充分認識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學生學會合情推理的能力,同時也培養(yǎng)了學生愛思考,善交流的良好學習慣。
    (一)知識與技能。
    2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
    (二)過程與方法。
    1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
    2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達能力。
    3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達化,培養(yǎng)學生的化歸思想。
    4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
    5.通過活動4,讓學生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
    (三)情感與態(tài)度。
    1.通過探究平方差公式,讓學生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
    平方差公式的教學設(shè)計篇三
    學習方法:歸納、概括、總結(jié)。
    創(chuàng)設(shè)問題情境,引入新課。
    在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
    如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。
    1、請看乘法公式。
    (a+b)(a-b)=a2-b2(1)。
    左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是。
    a2-b2=(a+b)(a-b)(2)。
    利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
    a2-b2=(a+b)(a-b)。
    如x2-16。
    =(x)2-42。
    =(x+4)(x-4)。
    9m2-4n2。
    =(3m)2-(2n)2。
    =(3m+2n)(3m-2n)。
    例1、把下列各式分解因式:
    例2、把下列各式分解因式:。
    (1)9(m+n)2-(m-n)2;(2)2x3-8x.
    補充例題:判斷下列分解因式是否正確。
    (1)(a+b)2-c2=a2+2ab+b2-c2.
    (2)a4-1=(a2)2-1=(a2+1)(a2-1)。
    1、教科書習題。
    2、分解因式:x4-16x3-4x4x2-(y-z)2。
    3、若x2-y2=30,x-y=-5求x+y。
    平方差公式的教學設(shè)計篇四
    :1、進一步提高分析,解決問題的能力。
    2、學會條件整理,明晰解題思路。
    3、運用二元一次方程解決有關(guān)配套與設(shè)計的應(yīng)用題。
    配套的關(guān)鍵在于:做上衣和做褲子的條數(shù)是相等的(也可以理解為相等數(shù)量關(guān)系)。
    另一相等關(guān)系體現(xiàn)在:做上衣和做褲子的布料之和為600米。
    甲乙兩種作物的單位面積產(chǎn)量的比是1:1.5是什么意思?
    甲、乙兩種作物的總產(chǎn)量的比是3:4是什么意思?
    本題有哪些等量關(guān)系?
    解這個方程組,得。
    過長方形土地的長邊上離一端約處,把這塊土地分為兩塊長方形土地,較大一塊土地種種作物。較小一塊土地種種作物。
    當堂檢測題。
    拉機每天耕地畝,可列方程組。
    2、某校運動員分組訓練,若每組7人余3人,若每組8人,則缺5人,設(shè)運動員人數(shù)為人,組數(shù)為組,則列方程組()。
    a、b、c、d、
    3、某地區(qū)“退耕還林”后,耕地面積和林地面積共180平方千米,耕地面積是林地面積的25%,設(shè)耕地面積為平方千米,林地面積為平方千米,根據(jù)題意,可得方程組()。
    a、b、c、d、
    4、某人身上只有2元和5元兩種紙幣,他買一件物品需支付27元,則付款的方法有()。
    a、1種b、2種c、3種d、4種。
    5、如圖,一個長形,它的長減少4厘米,寬增加2厘米,所得的是一正方形,它的面積與原長方形的面積等,求原長方形的長和寬。
    平方差公式的教學設(shè)計篇五
    3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。
    重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
    以教師的精講、引導為主,輔以引導發(fā)現(xiàn)、合作交流。
    (一)創(chuàng)設(shè)問題情境,引入新課。
    1、你會做嗎?
    (1)(x+1)(x—1)=_____=()()。
    (3)(3x+2)(3x—2)=_____=()()。
    2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學生興趣。)。
    交流上面第1題的答案,引導學生進一步思考:
    (合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
    我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎(chǔ)上,讓學生用語言敘述公式,并讓學生熟記。)。
    (三)嘗試探究。
    (四)鞏固練習。
    (l)(x+a)(x—a)。
    (2)(m+n)(m—n)(3)(a+3b)(a—3b)。
    (4)(1—5y)(l+5y)(5)998×1002。
    (6)395×405。
    2、直接寫出答案:
    (l)(—a+b)(a+b)。
    (2)(a—b)(b+a)。
    (3)(—a—b)(—a+b)。
    (4)(a—b)(—a—b)(5)999×1001。
    (6)×(讓學生獨立完成,互評互改。)。
    (五)小結(jié)。
    2.運用公式要注意什么?
    (1)要符合公式特征才能運用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。
    (學生回答,教師總結(jié))。
    (六)作業(yè)。
    p106習題1—5題。
    教學反思。
    通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
    平方差公式的教學設(shè)計篇六
    學生已經(jīng)掌握了多項式與多項式相乘,但是對于某些特殊的多項式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點內(nèi)容之一。
    平方差公式是第一個乘法公式,教學時,我是這樣引入新課的,先計算下列各題,看誰做的又對又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學生的好勝心并為進一步探索新知搭建好有力的平臺,然后我又讓學生討論交流上面幾個等式左、右兩邊各有什么特點,你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個規(guī)律嗎?給學生充分的觀察、分析、討論交流的時間,老師應(yīng)及時的給與必要的指導、鼓勵和由衷的贊美,這一點我做的還很不夠,今后要多多注意。
    然后我有設(shè)計了這樣一道題:下列多項式乘法中可以用平方差公式計算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學生理解公式的特征,掌握公式的。特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應(yīng)由易到難逐步安排學習這方面的內(nèi)容。
    平方差公式的教學設(shè)計篇七
    平方差公式與完全平方公式是初中數(shù)學代數(shù)學知識方面應(yīng)用最廣泛的公式,也是學生代數(shù)運算的基礎(chǔ)公式,在今后的數(shù)學學習過程中,更能體現(xiàn)其重要性,所以這兩個公式的教學要求很高,需要每一名學生都必須熟練掌握這兩個公式,并因此可以靈活運用公式進行因式分解和分解因式,解決很多代數(shù)問題。
    如同勾股定理在全世界數(shù)學基礎(chǔ)教學中地位顯著,全世界各地數(shù)學教科書都要求學生掌握一樣,平方差公式與完全平方公式也是全世界以致全國各地教科書都必講必學的內(nèi)容之一,作為整式的乘法公式,人教版教科書把平方差公式與完全平方公式安排在整式的乘法這一章的第二節(jié),在第一節(jié)內(nèi)容上先讓學生掌握整式乘法的各項法則,當學生熟練掌握多項式與多項式的乘法后,再由此讓學生來學生我們的乘法公式,本節(jié)內(nèi)容分兩部分,先介紹平方差公式,再介紹完全平方公式。
    在學生熟練掌握多項式與多項式的乘法后,開始介紹平方差公式,教科書上是由找規(guī)律開始,讓學生利用多項式乘法法則計算,從而發(fā)現(xiàn)平方差公式,由找規(guī)律得出公式的猜想,再介紹平方差公式的幾何面積驗證方法,來驗證公式猜想的正確性,從而由代數(shù)探究及幾何論證來得出平方差公式,得出公式后再來實際應(yīng)用。
    我一直嚴格要求自己,認真?zhèn)浣滩模斎灰舱J真?zhèn)鋵W生,使課堂教學符合學生的實際需要。學生基礎(chǔ)較差,教學內(nèi)容要求生動、易學易懂,讓學生能在活動教學中進行簡單探究從而掌握好基礎(chǔ)知識。,我認真準備,仔細研讀教材,精心制作出課件和教案,按教科書的教學順序和過程,既安排學生計算上的運算探究猜想,又安排幾何實踐剪紙法,利用面積來驗證公式。我從實際問題出發(fā),給出動手操作的實際幾何問題引出本課,得出平方差公式的猜想,讓學生動手實踐,數(shù)形結(jié)合得出平方差公式,在利用多項式的乘法法則計算驗證,最后辨析、應(yīng)用,讓學生熟悉平方差公式,最后應(yīng)用提高,給出實際生活中的一個問題,利用平方差公式計算較大的數(shù)字,讓學生明白學習,平方差公式不但可以在實際生活中運用,而且還可以簡便計算,激發(fā)學生對平方差公式學習的興趣,從而很好地掌握好平方差公式。最后再進行小結(jié),反饋。
    平方差公式的教學設(shè)計篇八
    教學目標:
    一、知識與技能。
    1、參與探索平方差公式的過程,發(fā)展學生的推理能力2、會運用公式進行簡單的乘法運算。
    二、過程與方法。
    1、經(jīng)歷探索過程,學會歸納推導出某種特種特定類型乘法并用簡單的。
    數(shù)學式子表達出,即給出公式。
    2、在探索過程的教學中,培養(yǎng)學生觀察、歸納的能力,發(fā)展學生的符。
    號感和語言描述能力。
    三、情感與態(tài)度。
    以探索、歸納公式和簡單運用公式這一數(shù)學情景,加深學生的體驗,增加學習數(shù)學和使用的信心。培養(yǎng)學生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學方法的逐步形成.
    教學重點:公式的簡單運用。
    教學難點:公式的推導。
    教學方法:學生探索歸納與教師講授結(jié)合。
    課前準備:投影儀、幻燈片。
    平方差公式的教學設(shè)計篇九
    指導學生用語言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個公式叫做平方差公式。
    指導學生發(fā)現(xiàn)公式的特點:
    1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個二項式的積,在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。
    2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。
    提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。
    平方差公式的教學設(shè)計篇十
    前不久聽了我校朱昌榮老師的一節(jié)數(shù)學課,這節(jié)課是朱老師安排的一節(jié)乘法公式——平方差公式的新授課,這節(jié)課給我留下了深刻的影響。
    教師講課語言清晰,有較強的表達和應(yīng)變能力,課堂教學基本功好。
    乘法公式的引入,使學生既復習了多項式的乘法運算,又形象直觀地理解了乘法公式的內(nèi)在實質(zhì)。課堂教學中充分體現(xiàn)了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內(nèi)的練習量、內(nèi)容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當?shù)募由顟?yīng)用,滿足了不同層次的學生的學習。
    一點建議:
    1、引入時,還可以安排得生動一點,可以先設(shè)疑,提出問題,讓學生探討,猜想,歸納,以激發(fā)學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結(jié)論來得出,從而使學生感到今天要學的內(nèi)容的重要性,這樣學生的學習將更主動。
    2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數(shù)或項。相同項在前,相反項在后,結(jié)果才能用相同項的平方減去相反項的平方。
    3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應(yīng)該給出恰當準確的解釋。
    以上是我的淺顯認識,不妥之處,還望朱老師海涵,大家批評。
    謝謝。
    平方差公式的教學設(shè)計篇十一
    教師講課語言清晰,有較強的表達和應(yīng)變能力,課堂教學基本功好。
    乘法公式的引入,使學生既復習了多項式的乘法運算,又形象直觀地理解了乘法公式的內(nèi)在實質(zhì)。課堂教學中充分體現(xiàn)了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內(nèi)的練習量、內(nèi)容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當?shù)募由顟?yīng)用,滿足了不同層次的學生的學習。
    一點建議:
    1、引入時,還可以安排得生動一點,可以先設(shè)疑,提出問題,讓學生探討,猜想,歸納,以激發(fā)學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結(jié)論來得出,從而使學生感到今天要學的內(nèi)容的重要性,這樣學生的學習將更主動。
    2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數(shù)或項。相同項在前,相反項在后,結(jié)果才能用相同項的平方減去相反項的平方。
    3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應(yīng)該給出恰當準確的解釋。
    以上是我的淺顯認識,不妥之處,還望楊老師海涵,大家批評。
    平方差公式的教學設(shè)計篇十二
    平方差公式是在學習多項式乘法等知識的基礎(chǔ)上,自然過渡到具有特殊形式的多項式的乘法,體現(xiàn)教材從一般到特殊的意圖。教材為學生在教學活動中獲得數(shù)學的思想方法、能力、素質(zhì)提供了良好的契機。對它的學習和研究,不僅得到了特殊的多項式乘法的簡便算法,而且為以后的因式分解,分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ),同時也為完全平方公式的學習提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個重要的公式。
    學生是在學習積的乘方和多項式乘多項式后學習平方差公式的,但在進行積的乘方的運算時,底數(shù)是數(shù)與幾個字母的積時往往把括號漏掉,在進行多項式乘法運算時常常會確定錯某些次符號及漏項等問題。學生學習平方差公式的困難在于對公式的結(jié)構(gòu)特征以及公式中字母的廣泛的理解,當公式中a、b是式時,要把它括號在平方。
    難點:理解掌握平方差公式的結(jié)構(gòu)特點以及靈活運用平方差公式解決實際問題.。
    平方差公式的教學設(shè)計篇十三
    進一步使學生理解掌握平方差公式,并通過小結(jié)使學生理解公式數(shù)學表達式與文字表達式在應(yīng)用上的差異.
    教學重點和難點:公式的應(yīng)用及推廣.
    1.(1)用較簡單的代數(shù)式表示下圖紙片的面積.
    (2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個矩形,并用代數(shù)式表示出你新拼圖形的面積.
    講評要點:
    沿hd、gd裁開均可,但一定要讓學生在裁開之前知道。
    hd=bc=gd=fe=a-b,
    這樣裁開后才能重新拼成一個矩形.希望推出公式:
    a2-b2=(a+b)(a-b)。
    2.(1)敘述平方差公式的數(shù)學表達式及文字表達式;。
    (2)試比較公式的兩種表達式在應(yīng)用上的差異.
    說明:平方差公式的數(shù)學表達式在使用上有三個優(yōu)點.(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學的人“套用”;(3)形式簡潔.但數(shù)學表達式中的a與b有概括性及抽象性,這樣也就造成對具體問題存在一個判定a、b的`問題,否則容易對公式產(chǎn)生各種主觀上的誤解.
    依照公式的文字表達式可寫出下面兩個正確的式子:
    經(jīng)對比,可以讓人們體會到公式的文字表達式抽象、準確、概括.因而也就“欠”明確(如結(jié)果不知是誰與誰的平方差).故在使用平方差公式時,要全面理解公式的實質(zhì),靈活運用公式的兩種表達式,比如用文字公式判斷一個題目能否使用平方差公式,用數(shù)學公式確定公式中的a與b,這樣才能使自己的計算即準確又靈活.
    3.判斷正誤:
    (1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
    (3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
    (1)102×98;(2)(y+2)(y-2)(y2+4).
    解:(1)102×98(2)(y+2)(y-2)(y2+4)。
    =(100+2)(100-2)=(y2-4)(y2+4)。
    =9996;。
    (1)103×97;(2)(x+3)(x-3)(x2+9);。
    (3)59.8×60.2;(4)(x-)(x2+)(x+).
    3.請每位同學自編兩道能運用平方差公式計算的題目.
    例2填空:
    思考題:什么樣的二項式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?
    (某兩數(shù)平方差的二項式可逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積)。
    練習。
    填空:
    1.x2-25=()();。
    2.4m2-49=(2m-7)();。
    3.a4-m4=(a2+m2)()=(a2+m2)()();。
    例3計算:
    (1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
    解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
    =[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
    =(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
    =m4-14m2+49-n2.
    1.什么是平方差公式?一般兩個二項式相乘的積應(yīng)是幾項式?
    3.怎樣判斷一個多項式的乘法問題是否可以用平方差公式?
    (1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
    (3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
    (1)69×71;(2)53×47;(3)503×497;(4)40×39.
    平方差公式的教學設(shè)計篇十四
    (4)(+3z)(—3z)=_____。
    (1)(x+1)(1+x),
    (2)(2x+)(—2x),
    (3)(a—b)(—a+b),
    (4)(—a—b)(—a+b)。
    幫助學生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應(yīng)由易到難逐步安排學習這方面的內(nèi)容。
    平方差公式的教學設(shè)計篇十五
    本周聽了滿老師的一節(jié)數(shù)學課,這節(jié)課是滿老師安排的一節(jié)乘法公式——平方差公式的新授課,這節(jié)課給我留下了深刻的影響。
    教師講課語言清晰,有較強的表達和應(yīng)變能力,課堂教學基本功好。乘法公式的引入,使學生既復習了多項式的乘法運算,又形象直觀地理解了乘法公式的內(nèi)在實質(zhì)。課堂教學中充分體現(xiàn)了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內(nèi)的練習量、內(nèi)容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當?shù)募由顟?yīng)用,滿足了不同層次的學生的學習。一點建議:
    1、引入時,還可以安排得生動一點,可以先設(shè)疑,提出問題,讓學生探討,猜想,歸納,以激發(fā)學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結(jié)論來得出,從而使學生感到今天要學的內(nèi)容的重要性,這樣學生的學習將更主動。
    2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數(shù)或項。相同項在前,相反項在后,結(jié)果才能用相同項的平方減去相反項的平方。
    3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應(yīng)該給出恰當準確的解釋。
    平方差公式的教學設(shè)計篇十六
    導入新課,是課堂教學的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
    把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應(yīng)用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認識到理性認識的升華。在此設(shè)計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學生歸納出平方差公式的運用技巧。
    以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設(shè)計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
    本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
    1、節(jié)奏的把握上。
    這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
    2、充分發(fā)揮學生的主體地位上。
    這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。
    平方差公式的教學設(shè)計篇十七
    《平方差公式》這一節(jié)重點和難點就在于結(jié)構(gòu)的不變性和字母的可變性。因此我的教學設(shè)計思想是從讓每一位學生理解和掌握公式結(jié)構(gòu)的不變性和字母的可變性從而達到熟練運用的目的。只是在具體的教學手段和措施及側(cè)重點上有所區(qū)別。雖然如此,我個人認為基本目標已經(jīng)達到,也取得了初步成效,尤其是對易錯點的側(cè)重讓學生記憶深刻效果更明顯。
    具體來說,成功之處我們都基本實現(xiàn)了教學目標,突出了教學重難點,教學過程環(huán)環(huán)相扣,題目設(shè)計逐層深入,及時反饋學習效果,精講多練?;緦崿F(xiàn)了預想的效果。我自認為該課成功之處主要體現(xiàn)在:
    1、課前準備充分,教學設(shè)計合理充實,有很強的實用性和創(chuàng)造性。
    2、導入新穎,從小故事出發(fā),激發(fā)學生興趣,給學生留下懸念,同時對平方差公式有了初步的感性認識,從而揭示課題。然后再通過一系列的探索和練習以及公式的幾何解釋,使學生對新知識的理解由感性認識到理性認識的過渡。
    3、選題合理、有針對性和層次性。在鞏固練習中通過像(x+y)(x-y)這種簡單的套公式題型逐漸轉(zhuǎn)換到涉及帶負號的變式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)這樣的題型,通過各類變式和判斷及找錯的題型問題的暴露,及時處理。使得學生逐步加深對公式結(jié)構(gòu)的理解和記憶。然后轉(zhuǎn)回到課前給學生留下的疑問,最后實現(xiàn)創(chuàng)新,用簡便方法計算像2002×1998.使得整個課堂容量大,充實。
    進的例題練習讓學生逐步理解公式中字母的可變性。最后達到對公式的全面和深刻的理解和掌握,使公式的運用得到升華。
    5、本節(jié)課的重點和難點就是在于結(jié)構(gòu)的不變性和字母的可變性。我就側(cè)重運用公式時的易錯點。不僅在訓練期間多次強調(diào)的方式提醒學生易錯點,相同項在前,相反項在后,結(jié)果才能用相同相的平方減去相反項的平方,平方時底是單項式但系數(shù)不是1或底數(shù)是多項式時不要忘記打上括號,而且在最后的小結(jié)中給學生總結(jié)更是讓學生影響深刻。
    6、對公式進行幾何意義的解釋,我通過直觀演示操作,將學生不易理解的問題,使它變得直觀,從而顯得簡單。
    3、課堂效率有待提高。
    改進方向:1、繼續(xù)加強平時的“生本”理念的灌輸和學生討論、發(fā)言的培訓和鼓勵。
    2、教學設(shè)計時更全面、深入地考慮學生的問題也就是備課備學生。
    3、加強對學生發(fā)現(xiàn)問題、總結(jié)規(guī)律、提出疑問等課堂效果體現(xiàn)的關(guān)鍵環(huán)節(jié)。
    的培訓。
    4、課堂教學注重多措施了解學生學習效果的反饋。俗話說:“金無足赤,人無完人”。一節(jié)課上得再好,還是有些問題沒有考慮到,以上四本人的自我剖析,有的地方做的不是很完美,敬請各位同仁批評指正,本人一定笑納,并表示感謝。
    平方差公式的教學設(shè)計篇十八
    本節(jié)課采用情景—探究的方式,以猜想、實驗、論證為主要探究方式,得出平方差公式,應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先提醒學生要注意其特征,其次要做好式子的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來,應(yīng)用公式法因式分解的過程,實際上就是轉(zhuǎn)化和化歸的過程。在解決認識平方差公式的`結(jié)構(gòu)時候,重點突出學生自我思想的形成,能夠充分地不公式用自己的語言來敘述,在整個教學設(shè)計中,教師只作為了一個點撥者和引路人。然后應(yīng)用有梯度的典型例題加以鞏固,在學生頭腦中形成一個清晰完整的數(shù)學模型,使學生在今后的練習中游刃有余。
    不足之處:
    教學中時間把握還是不足,在設(shè)計的題目中不怎么合理,應(yīng)按題目的難度從易到難。
    有些題目的歸納可放手給學生討論后由學生說出,而不是教師代替。小組評價做的不夠,沒有足夠的小組的活動,沒有小組的競賽。
    教學語言還太隨意,數(shù)學的語言應(yīng)該嚴謹。在語調(diào)上應(yīng)該有所變化。