多邊形的內角和教學設計(優(yōu)質16篇)

字號:

    現(xiàn)代科技的快速發(fā)展給我們的生活帶來了很多便利和改變。當面臨這個問題時,我們需要考慮到各種不同的角度和利益關系。8.這些總結范文可以幫助我們更好地理解和運用總結的技巧和方法
    多邊形的內角和教學設計篇一
    完成《多邊形的內角和》教學之后,學生很自然地就會想到對于多邊形的情況如何。為了體現(xiàn)課堂以學生為主,培養(yǎng)學生自主探究的能力,在課前的教學設計中盡量圍繞學生展開。如:采取了小組合作學習、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預計到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點,主要表現(xiàn)在:
    (1)較多的著眼于課堂形式的多樣化及學生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學中最重要的知識點的落實。學生練的機會不多,僅有編制習題解答這一部分,且對學生來說要求較高,教師在編題前可先讓學生解題,給學生搭好階梯,使其不至于感到突然。
    (2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔當何種角色等。
    (3)在小組交流過程中學生的發(fā)言過分地注重于探索的結果,而忽視了學生探索過程的展示。同時教師有些總結性的話,限制了學生的思維,不能最大限度的'發(fā)揮學生自主探究的能力。
    (4)教師在教學過程中對學生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當最后一個平常表現(xiàn)較為一般的學生有此創(chuàng)意時,教師就應大加贊揚,從而也能激發(fā)課堂氣氛。
    多邊形的內角和教學設計篇二
    學情分析:
    學生已經(jīng)學過三角形的內角和定理的知識基礎,并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導學生利用分類、數(shù)形結合的思想,加強對數(shù)學知識的應用,發(fā)展學生合情合理的推理能力和語言表達能力。
    教學目標:
    1.知識與技能:運用三角形內角和定理來推證多邊形內角和公式,掌握多邊形的內角和的計算公式。
    2.過程與方法:經(jīng)理探究多邊形內角和計算方法的過程,培養(yǎng)學生的合作交流的意識。
    3.情感態(tài)度與價值觀:感受數(shù)學化歸的思想和實際應用的價值,同時培養(yǎng)學生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學習態(tài)度。
    教學重點:
    多邊形的內角和教學設計篇三
    目標。
    重點。
    難點。
    用具。
    方法。
    過程。
    1、溫故知新,揭示課題。
    引言之后,先讓學生:
    (1)試說出三角形以及三角形的邊、頂點、角的概念。
    (2)如圖1:試畫出的平分線、bc邊上的中線、bc邊上的高。
    然后,在此基礎上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強調“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。
    2、運用反例,揭示內涵。
    3、討論歸納,深化定義。
    引導啟發(fā)學生,歸納討論探索得到的結果:
    定義1三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。
    強調:三角形的角平分線是一條線段,而角的平分線是一條射線。
    定義2三角形的中線:在三角形中,連結一個頂點和它的對邊中點的線段。
    強調:三角形中線是一條線段。
    定義3三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。
    強調:三角形的高是線段,而垂線是直線。
    4、符號表示,加深理解。
    通過符號的表述,使學生對三角形的角平分線、中線、高的理解得到加深和強化,在記憶上也趨于簡化。
    5、初步運用,反復辨析。
    練習的設計遵循由由淺入深、循序漸進的原則,三個題目,三個層次:
    題1三角形的一條高是()。
    a.直線b.射線c.垂線。d.垂線段。
    題2畫鈍角三角形的高ae。
    題3。
    先讓學生思考練習,然后師生一起分析糾正,最后教師點撥小結。這環(huán)節(jié)運用電教手段,以增大教學容量和直觀性,提高效率。
    6、歸納總結,強化思想。
    這節(jié)課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。
    揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在學習時熟練三種語言的相互轉化。
    7、布置作業(yè),題目是:
    (1)書面作業(yè)p30#2,3 p41#5(做在書上)。
    (2)交本作業(yè)p41#4。
    (3)思考題1:
    思考題2:
    答案:1.4、7;。
    2.能。三角形為等腰三角形。
    多邊形的內角和教學設計篇四
    《多邊形內角和》這節(jié)課,我基本上完成了教學任務,教學目標基本達成,《多邊形內角和》教學反思。學生明確了轉化的思想是數(shù)學最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內角和,并且能夠運用多邊形的內角和公式解決相關問題。同時也有幾個地方引起了我深深的思考。
    首先,在這節(jié)課的設計中,我大膽的嘗試并使用網(wǎng)絡教學。在我最初的設計過程中,按照常規(guī)的方法引導學生先用分割的方法得到四邊形內角和,再探究多邊形的內角和。但是網(wǎng)絡教學教學就成為一種形式,沒有充分的發(fā)揮它的作用,效果也不是很好。后來改為不做任何方法的'指導,采用完全開放的探究,每步探究先讓學生嘗試,把學生推到主動位置,放手讓學生自己學習,教學過程主要靠學生自己去完成,盡可能做到讓學生在“活動”中學習,在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。要充分體現(xiàn)學生學習的自主性:規(guī)律讓學生自主發(fā)現(xiàn),方法讓學生自主尋找,思路讓學生自主探究,問題讓學生自主解決。課前我很擔心,但事實說明,這種探究才是真正的讓學生去嘗試,去挑戰(zhàn)。因此,在課堂教學中選用探究式,可以讓學生在自主學習中探究,在質疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學反思《多邊形內角和》教學反思》。總之我對探究課有了更深刻的理解。
    這節(jié)課的第一個環(huán)節(jié):引入,我認為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學生的注意力。這樣這節(jié)課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調動了學生的情緒,打動學生的心靈,形成良好的課堂氣氛切人口。第三個環(huán)節(jié):分層練習。充分發(fā)揮了網(wǎng)絡課的優(yōu)勢,真正做到了分層。
    其次,在探究這個環(huán)節(jié)中,有一個關鍵的地方處理的很不到位。即:當一個學生提出分割方法時,這時沒有及時把握住這個時機,讓更多的學生去嘗試這種方法,而是讓他自己把所得到的結論直接告訴大家,因此沒有讓更多的學生去體驗轉化的思想,我認為這節(jié)課最大的敗筆就在于此。課下我反復的思考出現(xiàn)問題的原因,是因為對學生估計的不足造成的。我總認為,在教師不指導的情況下,不會有學生想到分割這種方法,當課堂上學生出現(xiàn)這種方法時,我就有點激動,順著學生的思路走了,而忽視了大多數(shù)。因此,在備課時一定要更為細致的研究學生可能出現(xiàn)的情況,在上課時才能應對自如。
    總之,這節(jié)課我不是很滿意,細分析,偶然當中也包含著必然。新課標要求數(shù)學教學過程中要注重學生學習的過程,而知識的學習是一個建構過程,教師通過以組織者、合作者、和引導者的身份,根據(jù)學生的具體情況,對教材進行再加工,有創(chuàng)造地設計教學過程,在教學設計中要求新求變。用“新”和“變”來激發(fā)學生學習數(shù)學的欲望和興趣。根據(jù)不同的教學內容選擇不同的教學模式。因為只有這樣,課堂教學才能煥發(fā)出生機和活力。教師在這個過程中要為學生營造一個積極的、寬松的教學氛圍。所以,要做一個新時代的教師,除具備一定的專業(yè)知識外,還要具備領導才能,能夠駕御整個課堂。發(fā)現(xiàn)了自己的不足就意味著自己的進步。在今后的教學中,我會更加努力,讓我的每一位學生在我的每一節(jié)課上都能夠有新的收獲。
    多邊形的內角和教學設計篇五
    《多邊形內角和》這節(jié)課,我基本上完成了教學任務,教學目標基本達成,《多邊形內角和》教學反思。學生明確了轉化的思想是數(shù)學最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內角和,并且能夠運用多邊形的內角和公式解決相關問題。同時也有幾個地方引起了我深深的思考。
    首先,在這節(jié)課的設計中,我大膽的嘗試并使用網(wǎng)絡教學。在我最初的設計過程中,按照常規(guī)的方法引導學生先用分割的`方法得到四邊形內角和,再探究多邊形的內角和。但是網(wǎng)絡教學教學就成為一種形式,沒有充分的發(fā)揮它的作用,效果也不是很好。后來改為不做任何方法的指導,采用完全開放的探究,每步探究先讓學生嘗試,把學生推到主動位置,放手讓學生自己學習,教學過程主要靠學生自己去完成,盡可能做到讓學生在“活動”中學習,在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。要充分體現(xiàn)學生學習的自主性:規(guī)律讓學生自主發(fā)現(xiàn),方法讓學生自主尋找,思路讓學生自主探究,問題讓學生自主解決。課前我很擔心,但事實說明,這種探究才是真正的讓學生去嘗試,去挑戰(zhàn)。因此,在課堂教學中選用探究式,可以讓學生在自主學習中探究,在質疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學反思《多邊形內角和》教學反思》??傊覍μ骄空n有了更深刻的理解。
    這節(jié)課的第一個環(huán)節(jié):引入,我認為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學生的注意力。這樣這節(jié)課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調動了學生的情緒,打動學生的心靈,形成良好的課堂氣氛切人口。第三個環(huán)節(jié):分層練習。充分發(fā)揮了網(wǎng)絡課的優(yōu)勢,真正做到了分層。
    其次,在探究這個環(huán)節(jié)中,有一個關鍵的地方處理的很不到位。即:當一個學生提出分割方法時,這時沒有及時把握住這個時機,讓更多的學生去嘗試這種方法,而是讓他自己把所得到的結論直接告訴大家,因此沒有讓更多的學生去體驗轉化的思想,我認為這節(jié)課最大的敗筆就在于此。課下我反復的`思考出現(xiàn)問題的原因,是因為對學生估計的不足造成的。我總認為,在教師不指導的情況下,不會有學生想到分割這種方法,當課堂上學生出現(xiàn)這種方法時,我就有點激動,順著學生的思路走了,而忽視了大多數(shù)。因此,在備課時一定要更為細致的研究學生可能出現(xiàn)的情況,在上課時才能應對自如。
    總之,這節(jié)課我不是很滿意,細分析,偶然當中也包含著必然。新課標要求數(shù)學教學過程中要注重學生學習的過程,而知識的學習是一個建構過程,教師通過以組織者、合作者、和引導者的身份,根據(jù)學生的具體情況,對教材進行再加工,有創(chuàng)造地設計教學過程,在教學設計中要求新求變。用“新”和“變”來激發(fā)學生學習數(shù)學的欲望和興趣。根據(jù)不同的教學內容選擇不同的教學模式。因為只有這樣,課堂教學才能煥發(fā)出生機和活力。教師在這個過程中要為學生營造一個積極的、寬松的教學氛圍。所以,要做一個新時代的教師,除具備一定的專業(yè)知識外,還要具備領導才能,能夠駕御整個課堂。發(fā)現(xiàn)了自己的不足就意味著自己的進步。在今后的教學中,我會更加努力,讓我的每一位學生在我的每一節(jié)課上都能夠有新的收獲。
    將本文的word文檔下載到電腦,方便收藏和打印。
    多邊形的內角和教學設計篇六
    這節(jié)課本節(jié)的教學活動充分發(fā)揮學生的主體作用,激發(fā)了學生的學習興趣,使課堂充滿生機。在進行四邊形內角和定理的教學時,設計完成三個步驟:
    (1)通過動手操作,讓學生自己通過實驗的方法發(fā)現(xiàn)四邊形內角和定理;
    (2)讓學生把發(fā)現(xiàn)概括成命題;
    (3)通過學生討論命題證明的不同方法。
    整節(jié)課充滿著“自主、合作、探究、交流”的教學理念,營造了思維馳聘的空間,使學生在主動思考探究的過程中自然的獲得了新的知識。但由于本節(jié)課的內容多,學習時間較緊張,所以在給學生進行課堂討論四邊形內角和的不同的證明方法這一環(huán)節(jié)時把握地不夠好。由于討論的問題有難度,討論時間不夠充分。而且我為了能完成這節(jié)課的內容沒有對四邊形內角和的證明方法做以補充。
    這節(jié)課成功之處在習題的設計,由淺入深,每道題都各具代表性,都是典型的例題。使學生能夠熟練的應用多邊形內角和。在講此處不足是到后面難一點的題時,因為快要下課了,沒有給學生太多的時間,就顯得有些倉促,后進生有可能沒弄明白。
    多邊形的內角和教學設計篇七
    根據(jù)《數(shù)學課程標準》和素質教育的要求,結合學生的認知規(guī)律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結表達的能力。因此,確定如下教學目標:
    (1).知識技能目標。
    (2).過程和方法目標。
    讓學生經(jīng)歷知識的形成過程,認識數(shù)學特征,獲得數(shù)學經(jīng)驗,進一步發(fā)展學生的說理意識和簡單推理,合情推理能力。
    (3).情感目標。
    激勵學生的學習熱情,調動他們的學習積極性,使他們有自信心,激發(fā)學生樂于合作交流意識和獨立思考的習慣。。
    2、教學重、難點定位。
    教學難點是探索和歸納多邊形內角和的過程。
    1、教材的地位與作用。
    本課選自人教版數(shù)學七年級下冊第七章第三節(jié)《多邊形的內角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內容上,從三角形的內角和到多邊形的內角和,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。
    2、聯(lián)系及應用。
    本節(jié)課是以三角形的知識為基礎,仿照三角形建立多邊形的有關概念。因此。
    多邊形的邊、內角、內角和等等都可以同三角形類比。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉化等重要的思想方法。而多邊形在工程技術和實用圖案等方面有許多的實際應用,下一節(jié)平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質的理解。
    學生對三角形的知識都已經(jīng)掌握。讓學生由三角形的內角和等于180°,是一個定值,猜想四邊形的內角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的內角和出發(fā),譬如長方形、正方形的內角和都等于360°,可知如果四邊形的內角和是一個定值,這個定值是360°。要得到四邊形的內角和等于360°這個結論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導學生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內角和等于180°,就得到四邊形的內角和等于360°。讓學生從特殊四邊形的內角和聯(lián)想一般四邊形的內角和,并在思想上引導,學習將新問題化歸為已有結論的思想方法,這里學生都容易理解。課堂教學設計中,在探究五邊形,六邊形和七邊形的內角和時,讓學生動手實踐,設置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據(jù)自己本身的特點來加以補充和完善。在教學設計中,要求根據(jù)小組選擇的方法探索多邊形的內角和。首先,小組內各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內各個成員需要分工協(xié)作,才能夠順利的把任務完成;最后,學生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學生合情推理的意識。
    本節(jié)課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:
    1、教學方法的設計。
    我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。
    2、活動的開展。
    利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內容。
    3、現(xiàn)代教育技術的應用。
    我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設計中占了非常大的比例,探究活動一設置目的讓學生動手實踐,并把新知識與學過的三角形的相關知識聯(lián)系起來;探究活動二設置目的讓學生拓寬思路,為放開書本的束縛打下基礎;培養(yǎng)學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神;使學生懂得數(shù)學內容普遍存在相互聯(lián)系,相互轉化的特點。練習活動的設計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學生情感交流。
    多邊形的內角和教學設計篇八
    本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內角和。
    二、教學目標。
    2、數(shù)學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生學習熱情。
    三、教學重、難點。
    多邊形的內角和教學設計篇九
    (1)知識結構:
    (2)重點和難點分析:
    重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用,數(shù)學教案-多邊形的內角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
    2.教法建議
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。
    (2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
    (4)本節(jié)用到的數(shù)學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題,初中數(shù)學教案《數(shù)學教案-多邊形的內角和》。
    教學目標:
    1.使學生掌握四邊形的有關概念及四邊形的內角和定理;
    2.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力;
    3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數(shù)學思想;
    4.講解四邊形的有關概念時,聯(lián)系三角形的有關概念向學生滲透類比思想.
    教學重點:
    四邊形的內角和定理.
    教學難點:
    四邊形的概念
    教學過程:
    (一)復習
    在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念
    1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
    3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習:課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    (四)四邊形的內角和定理
    定理:四邊形的內角和等于 .
    注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
    (五)應用、反思
    例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
    求證:(1) ;(2)
    證明:(1) (四邊形的內角和等于 ),
    練習:
    1.課本124頁3題.
    小結:
    知識:四邊形的有關概念及其內角和定理.
    能力:向學生滲透類比和轉化的思想方法.
    作業(yè): 課本130頁 2、3、4題.
    多邊形的內角和教學設計篇十
    教學目標?。
    知識技能。
    通過探究,歸納出???。
    數(shù)學思考。
    1、?通過測量、類比、推理等數(shù)學活動,探索的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
    2、?通過把多邊形轉化成三角形體會轉化思想在幾何中的應用,同時。
    時讓學生體會從特殊到一般的認識問題的方法。
    3、?通過探索多邊形內角和公式,讓學生逐步從實驗幾何過度到。
    論證幾何。
    解決問題。
    通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
    情感態(tài)度。
    通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
    重點。
    難點。
    在探索時,如何把多邊形轉化成三角形。
    知識聯(lián)系。
    多邊形的對角線和三角形的內角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內容為多邊形的外角和做知識上的準備。
    知識背景。
    對多邊形在生活中有所認識。
    學習興趣。
    通過探究過程更能激發(fā)學生學習的興趣。
    教學工具。
    三角板和幾何畫板。
    教學流程設計。
    活動流程圖。
    活動內容和目的。
    活動一,教師和學生任意畫幾個多邊形,用量角器測其內角和。
    活動四、探索任意公式。
    活動六、小結和布置作業(yè)?。
    通過分組測量,得出這幾個。
    通過用不同方法分割四邊形為三角形,探索四邊形的內角和。
    通過類比四邊形內角和的得出方法,探索其他,發(fā)展學生的推理能力。
    通過畫正八邊形體會和應用。
    梳理所學知識,達到鞏固發(fā)展和提高的目的。
    教學過程?設計。
    問題與情景。
    師生行為。
    設計意圖。
    設計情景:什么是正多邊形?
    正八邊形有什么特點?
    你會畫邊長為3cm的正八邊形嗎?
    學生思考并回答問題。
    學生不會畫八邊形,畫八邊形需要知道它的每一個內角,怎么就能知道八邊形的每一個內角,就是今天要解決的問題,以此來激發(fā)學生的學習興趣和求知欲。
    活動1、
    在練習本畫出任意四邊形,五邊星,六邊形,七邊形。
    通過測量猜想每一個,感受數(shù)學的可實驗性,感受數(shù)學由特殊到一般的研究思想。
    活動2(重點)(難點)。
    學生在練習本上把一個四邊形分割成幾個三角形,教師在黑板上畫幾個四邊形,叫幾個學生來分割,從而用推理求四邊形的內角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點。
    通過分割及推理,培養(yǎng)學生用推理論證來說明數(shù)學結論的能力,同時也培養(yǎng)學生比較和歸納的能力。
    通過分割及推理,進一步培養(yǎng)學生的解決問題和推理的能力。
    活動4、探索任意。
    把活動2和3中的結論寫下來,進行對比分析,進一步猜想和推導任意,教師作總結性的結論,并且用動畫演示多邊形隨著邊數(shù)的增加其內角和的變化過程。
    活動5、畫一個邊長為3cm的八邊形。
    讓學生在練習本上畫一個邊長為3cm的八邊形,教師進行評價和展示。
    活動6、小結和布置作業(yè)?。
    師生共同回顧本節(jié)所學過的內容。
    多邊形的內角和教學設計篇十一
    過程與方法目標:通過多邊形內角和公式的推導過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
    教學重點:多邊形的內角和公式
    教學難點:多邊形內角和公式
    講解法、練習法、分小組討論法
    結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
    生成新知、深化新知、鞏固新知、小結作業(yè)。
    1. 導入新知
    首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內角和,緊接著提出問題:四邊形的
    內角和是多少?五邊形的內角和是多少?六邊形的內角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內角和(板書)。
    通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內角和的學習奠定了基礎。
    2. 生成新知
    接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內角和,由此
    得出四邊形的內角和是2個三角形的內角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內角和公式180*(n-2)。
    驗證:七邊形驗證
    在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3. 深化新知
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求
    內角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調我們分隔的一個原則。
    本環(huán)節(jié)的設計主要是對多變形內角和的一個深入了解,給學生一個內化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
    4. 鞏固提高
    我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領學生用我們所學過的多邊形的內角和公式來解決生活中的實際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內角和公式進一步鞏固提高。
    5. 小結作業(yè)
    先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
    多邊形的內角和教學設計篇十二
    設計理念:。
    一教材分析:。
    從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內角和到四邊形的內角和至多邊形的內角和,環(huán)環(huán)相扣。同時,對今后學習的鑲嵌,正多邊形和圓等都是非常重要的。知識的聯(lián)系性比較強。因此,本節(jié)課具在承上啟下的作用,符合學生的認知規(guī)律。再從本節(jié)的教學理念看,編者從簡單的幾何圖形入手,蘊含了把復雜問題轉化為簡單問題,化未知為已知的思想。充分體現(xiàn)了人人學有價值的數(shù)學,這一新課程標準精神。
    二、學情分析:。
    三、教學目標的確定:。
    3、通過探索多邊形內角和公式,讓學生逐步從實驗幾何過渡到論證幾何。
    四、重難點的確立:。
    既然是多邊形內角和具有承上啟下的作用。因此確定本節(jié)課的重點是探究多邊形的內角和的公式。由于七年級學生初學幾何,所以學生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點是探究多邊形內角和公式推導的基本思想,而解決問題的關鍵是教師恰當?shù)囊龑А?BR>    多邊形的內角和教學設計篇十三
    1、通過測量、類比、推理等數(shù)學活動,探索多邊形的內角和的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
    2、通過把多邊形轉化成三角形體會轉化思想在幾何中的應用,同時。
    時讓學生體會從特殊到一般的認識問題的方法。
    3、通過探索多邊形內角和公式,讓學生逐步從實驗幾何過度到。
    論證幾何。
    解決問題。
    通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
    情感態(tài)度。
    通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
    重點。
    難點。
    知識聯(lián)系。
    多邊形的對角線和三角形的內角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內容為多邊形的外角和做知識上的準備。
    知識背景。
    對多邊形在生活中有所認識。
    學習興趣。
    通過探究過程更能激發(fā)學生學習的興趣。
    教學工具。
    三角板和幾何畫板。
    教學流程設計。
    活動流程圖。
    活動內容和目的。
    活動一,教師和學生任意畫幾個多邊形,用量角器測其內角和。
    多邊形的內角和教學設計篇十四
    本節(jié)課從復習舊知入手,在引課時提問三角形的相關知識,讓學生在思想上對本節(jié)課產(chǎn)生興趣,并且會覺得知識點不是很難,提高學生的學習興趣,同時加強了數(shù)學與實際生活的聯(lián)系,讓學生感到數(shù)學離自己很近,激發(fā)了學生的求知欲,創(chuàng)設了良好的教學氛圍。
    其次注重讓學生在學習活動中領悟數(shù)學思想方法。數(shù)學的思想方法比有限的數(shù)學知識更為重要。學生在探索多邊形內角和的過程中先把多邊形轉化成三角形、進而求出內角和,這體現(xiàn)了由未知轉化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領會數(shù)學思想方法,真正理解和掌握數(shù)學的知識、技能,增強空間觀念及數(shù)學思考能力培養(yǎng),并獲得數(shù)學活動經(jīng)驗。同時,恰當?shù)氖褂谜n件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。同時也加大了練習量,有助于學生知識可鞏固和提高。
    整節(jié)課學生的情緒飽滿,思維活躍,在教師適當?shù)囊龑?,學生能夠合作交流和自主探究,成功的探索出了多邊形的內角和公式,較好的完成了本節(jié)課的教學目標。
    不足之處:
    1、本節(jié)課給學生提供的探究思考與交流的時間比較充足,但展示交流的機會不夠充分,并且個別學生沒有很好的融入課堂,游離于課本之外。
    2、本節(jié)課學生小組活動的準備、具體實施、歸納交流、評價等環(huán)節(jié)設計不夠完善。
    3、練習不夠多樣化。
    多邊形的內角和教學設計篇十五
    4、培養(yǎng)學生合作、表達等能力情感。
    教學重點與難點:多邊形內角和與外角和特點是重點。
    利用化歸思想歸納多邊形內角和與外角和特點是難點。
    教學過程:
    一、創(chuàng)設情境。
    師出示一個三角形,問:這是什么圖形?它是怎樣定義的?
    生:三條線段首尾順次連接而成的圖形。
    師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?
    這些圖形我們都叫做多邊形。
    師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:
    我們叫做凹多邊形,不在我們今天的研究范圍之內。
    二、探究新知。
    1、?確立研究范圍。
    生1:它的角。
    師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內角和與外角和)。
    多邊形的內角和教學設計篇十六
    《探索多邊形的內角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數(shù)學教學的一點啟發(fā)。
    有幸與實驗小學趙麗老師同時選中《多邊形的內角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農村小學學生人數(shù)的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節(jié)課中,根據(jù)學生認知水平差異,把學生分成a,b兩組,在組內又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復式班學生在學習效果上有著明顯的成效?;谶@一基礎,我采用分層的模式來進行多邊形的內角和的教學,這一嘗試,讓我對自己的.數(shù)學教學有了如下反思:
    1,以經(jīng)驗為基礎,讓學生得到不同的發(fā)展。
    基于學生的認知經(jīng)驗及活動經(jīng)驗,對學生進行分組,以期達到不同的學生在數(shù)學上得到不同程度的發(fā)展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區(qū)別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
    2,勇于放手,培養(yǎng)學生自學的能力。
    在一開始設計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學生,多邊形的內角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉化為三角形內角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學生的探究自學能力比我預想的出色許多。
    3,細節(jié)入手,培養(yǎng)學生良好習慣。
    小學數(shù)學良好習慣的培養(yǎng)不僅對學生自身的數(shù)學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養(yǎng),這樣才能讓我們的數(shù)學老師對課堂全局的把握更加深刻,才能夠讓數(shù)學課堂井然有序,數(shù)學教學效果得到最大程度的保證。
    “授人以魚,不如授人以漁?!蔽覀兊臄?shù)學分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發(fā)展。