二次函數(shù)數(shù)學教案(實用16篇)

字號:

    教案應該具備條理清晰、語言簡練、操作性強的特點。確定明確的教學目標和學習目標,使學生能夠明白自己的學習任務和預期結(jié)果。以下是小編為大家整理的一些教案范文,供大家參考。希望可以幫助到大家,快來一起學習吧!記得在編寫教案時,多結(jié)合自身教學環(huán)境和學生實際情況,靈活運用,力求達到最好的教學效果哦。
    二次函數(shù)數(shù)學教案篇一
    在整個中學數(shù)學知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學的重要考點,也是線性數(shù)學知識的基礎(chǔ)。那老師應該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學二次函數(shù)教案教學方法。
    一、重視每一堂復習課數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
    四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
    二、立足課堂,提高效率:做到教師入題海,學生出題海。教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
    三、教師在設(shè)計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果。
    四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要。因此,我們在授課的過程中,在關(guān)注知識復習的同時,也要關(guān)注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感。這樣他們才會更有興趣的學習下去。
    1、質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
    2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學模型。
    3、學生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
    4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
    1、教學案例、教學設(shè)計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設(shè)計)是事先設(shè)想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。
    2、教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
    4、教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
    二次函數(shù)數(shù)學教案篇二
    通過學生的討論,使學生更清楚以下事實:
    (1)分解因式與整式的乘法是一種互逆關(guān)系;。
    (2)分解因式的結(jié)果要以積的形式表示;。
    (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。
    (4)必須分解到每個多項式不能再分解為止。
    活動5:應用新知。
    例題學習:
    p166例1、例2(略)。
    在教師的引導下,學生應用提公因式法共同完成例題。
    讓學生進一步理解提公因式法進行因式分解。
    活動6:課堂練習。
    1.p167練習;。
    2.看誰連得準。
    x2-y2(x+1)2。
    9-25x2y(x-y)。
    x2+2x+1(3-5x)(3+5x)。
    xy-y2(x+y)(x-y)。
    3.下列哪些變形是因式分解,為什么?
    (1)(a+3)(a-3)=a2-9。
    (2)a2-4=(a+2)(a-2)。
    (3)a2-b2+1=(a+b)(a-b)+1。
    (4)2πr+2πr=2π(r+r)。
    學生自主完成練習。
    通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
    活動7:課堂小結(jié)。
    從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
    學生發(fā)言。
    通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學思想的理解。
    活動8:課后作業(yè)。
    課本p170習題的第1、4大題。
    學生自主完成。
    通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。
    板書設(shè)計(需要一直留在黑板上主板書)。
    15.4.1提公因式法例題。
    1.因式分解的定義。
    2.提公因式法。
    二次函數(shù)數(shù)學教案篇三
    一、教材分析:
    《34.4二次函數(shù)的應用》選自義務教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。
    本節(jié)教學時間安排1課時。
    二、教學目標:
    知識技能:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
    2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    數(shù)學思考:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
    2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
    3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想。
    解決問題:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。
    2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力。
    情感態(tài)度:
    1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。
    2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。
    三、教學重點、難點:
    教學重點:
    1.體會方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    教學難點:
    1.探索方程與函數(shù)之間關(guān)系的過程。
    2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
    四、教學方法:啟發(fā)引導合作交流。
    五:教具、學具:課件。
    六、教學過程:
    [活動1]檢查預習引出課題。
    預習作業(yè):
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
    師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
    教師重點關(guān)注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
    設(shè)計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。
    [活動2]創(chuàng)設(shè)情境探究新知。
    問題。
    1.課本p94問題.
    3.結(jié)合預習題1,完成課本p94觀察中的題目。
    師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。
    教師重點關(guān)注:
    1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。
    2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應用;。
    3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
    設(shè)計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設(shè)熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關(guān)系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。
    [活動3]例題學習鞏固提高。
    問題。
    例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
    師生行為:教師提出問題,引導學生根據(jù)預習題2獨立完成,師生互相訂正。
    教師關(guān)注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。
    設(shè)計意圖:通過預習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
    [活動4]練習反饋鞏固新知。
    二次函數(shù)數(shù)學教案篇四
    1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗。
    2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。
    3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對稱軸、頂點坐標)。
    教學重點:二次函數(shù)y=ax2的圖象的作法和性質(zhì)。
    教學難點:建立二次函數(shù)表達式與圖象之間的聯(lián)系。
    教學方法:自主探索,數(shù)形結(jié)合。
    利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時,應盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學生對二次函數(shù)性質(zhì)的真正理解。
    一、認知準備:
    1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?
    2.畫函數(shù)圖象的方法和步驟是什么?(學生口答)。
    你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。
    二、新授:
    (一)動手實踐:作二次函數(shù)y=x2和y=-x2的圖象。
    (同桌二人,南邊作二次函數(shù)y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學生黑板完成)。
    (二)對照黑板圖象議一議:(先由學生獨立思考,再小組交流)。
    1.你能描述該圖象的形狀嗎?
    2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?
    3.當x0時,隨著x的增大,y如何變化?當x0時呢?
    4.當x取什么值時,y值最???最小值是什么?你是如何知道的?
    5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。
    (三)學生交流:
    1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)。
    2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點和不同點?
    3.教師出示同一直角坐標系中的兩個函數(shù)y=x2和y=-x2圖象,根據(jù)圖象回答:
    (1)二次函數(shù)y=x2和y=-x2的圖象關(guān)于哪條直線對稱?
    (2)兩個圖象關(guān)于哪個點對稱?
    (3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?
    (四)動手做一做:
    1.作出函數(shù)y=2x2和y=-2x2的圖象。
    (同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學生黑板完成)。
    2.對照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):
    (1)你能說出二次函數(shù)y=2x2具有哪些性質(zhì)嗎?
    (2)你能說出二次函數(shù)y=-2x2具有哪些性質(zhì)嗎?
    (3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質(zhì)嗎?
    (學生分小組活動,交流各自的發(fā)現(xiàn))。
    3.師生歸納總結(jié)二次函數(shù)y=ax2的圖象及性質(zhì):
    (2)性質(zhì)。
    a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。
    b:頂點坐標是(0,0)。
    c:對稱軸是y軸。
    d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
    e:增減性:a0時,在對稱軸的左側(cè)(x0),y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(x0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。
    4.應用:(1)說出二次函數(shù)y=1/3x2和y=-5x2有哪些性質(zhì)。
    (2)說出二次函數(shù)y=4x2和y=-1/4x2有哪些相同點和不同點?
    三、小結(jié):
    通過本節(jié)課學習,你有哪些收獲?(學生小結(jié))。
    1.會畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線。
    2.知道二次函數(shù)y=ax2的性質(zhì):
    a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。
    b:頂點坐標是(0,0)。
    c:對稱軸是y軸。
    d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
    e:增減性:a0時,在對稱軸的左側(cè)(x0=,y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(x0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。
    二次函數(shù)數(shù)學教案篇五
    二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
    三、教師在設(shè)計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
    四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復習的同時,也要關(guān)注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
    二次函數(shù)數(shù)學教案篇六
    數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
    你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
    做到教師入題海,學生出題海。教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
    讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果。
    興趣是學習最好的動力,在上復習課時尤為重要。因此,我們在授課的過程中,在關(guān)注知識復習的同時,也要關(guān)注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感。這樣他們才會更有興趣的學習下去。
    1、質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
    2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學模型。
    3、生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
    4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
    1、教學案例、教學設(shè)計、教學實錄、教學敘事的區(qū)別:是事先設(shè)想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。
    2、教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
    4、教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
    二次函數(shù)數(shù)學教案篇七
    1.教學案例、教學設(shè)計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設(shè)計)是事先設(shè)想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。
    2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
    4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
    二次函數(shù)數(shù)學教案篇八
    1.從具體函數(shù)的圖象中認識二次函數(shù)的基本性質(zhì),了解二次函數(shù)與二次方程的相互關(guān)系.
    2.探索二次函數(shù)的變化規(guī)律,掌握函數(shù)的最大值(或最小值)及函數(shù)的增減性的概念.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.
    3.通過具體實例,讓學生經(jīng)歷概念的形成過程,使學生體會到函數(shù)能夠反映實際事物的變化規(guī)律,體驗數(shù)學來源于生活,服務于生活的辯證觀點.
    教學重點。
    二次函數(shù)的最大值,最小值及增減性的理解和求法.
    教學難點。
    二次函數(shù)的性質(zhì)的應用.
    二次函數(shù)數(shù)學教案篇九
    分組復習舊知。
    探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
    可引導學生從幾個方面進行討論:
    (1)如何畫圖。
    (2)頂點、圖象與坐標軸的交點。
    (3)所形成的三角形以及四邊形的面積。
    (4)對稱軸。
    從上面的問題導入今天的課題二次函數(shù)中的圖象與性質(zhì)。
    二次函數(shù)數(shù)學教案篇十
    在整個中學數(shù)學知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學的重要考點,也是線性數(shù)學知識的基礎(chǔ)。那老師應該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學二次函數(shù)教案教學方法。
    一、重視每一堂復習課數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
    四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
    二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
    三、教師在設(shè)計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
    四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復習的同時,也要關(guān)注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
    1.質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
    2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學模型。
    3.學生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
    4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
    1.教學案例、教學設(shè)計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設(shè)計)是事先設(shè)想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。
    2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
    4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
    二次函數(shù)數(shù)學教案篇十一
    教學目標:
    知識與技能。
    1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
    2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應地會求出另一個量的值。
    3、會對一個具體實例進行概括抽象成為數(shù)學問題。
    過程與方法。
    1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
    2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
    情感與價值觀。
    1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
    2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
    教學重點:
    1、掌握函數(shù)概念。
    2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
    3、能把實際問題抽象概括為函數(shù)問題。
    教學難點:
    1、理解函數(shù)的概念。
    2、能把實際問題抽象概括為函數(shù)問題。
    教學過程設(shè)計:
    一、創(chuàng)設(shè)問題情境,導入新課。
    『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
    二次函數(shù)數(shù)學教案篇十二
    1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點。
    2.注意培養(yǎng)學生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學生思考:
    (1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)。
    (2)如何判斷y=x2的圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。
    二次函數(shù)數(shù)學教案篇十三
    (二)能力訓練要求。
    1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神、
    3、通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識、
    (三)情感與價值觀要求。
    2、具有初步的創(chuàng)新精神和實踐能力、
    二次函數(shù)數(shù)學教案篇十四
    《34.4二次函數(shù)的應用》選自義務教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。
    本節(jié)教學時間安排1課時。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
    2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
    2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
    3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。
    2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力。
    1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。
    2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。
    1.體會方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    1.探索方程與函數(shù)之間關(guān)系的過程。
    2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
    預習作業(yè):
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
    師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
    教師重點關(guān)注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
    設(shè)計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。
    問題。
    1.課本p94問題.
    3.結(jié)合預習題1,完成課本p94觀察中的題目。
    師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。
    1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。
    2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應用;。
    3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
    設(shè)計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設(shè)熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關(guān)系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。
    [活動3]例題學習鞏固提高。
    問題。
    例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
    師生行為:教師提出問題,引導學生根據(jù)預習題2獨立完成,師生互相訂正。
    教師關(guān)注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。
    設(shè)計意圖:通過預習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
    [活動4]練習反饋鞏固新知。
    二次函數(shù)數(shù)學教案篇十五
    讓學生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
    :各種隱含條件的挖掘。
    :引導發(fā)現(xiàn)法。
    (一)診斷補償,情景引入:
    (先讓學生復習,然后提問,并做進一步診斷)。
    (二)問題導航,探究釋疑:
    (三)精講提煉,揭示本質(zhì):
    分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。
    解由題意,得點b的坐標為(0。8,-2。4),
    又因為點b在拋物線上,將它的坐標代入,得所以因此,函數(shù)關(guān)系式是。
    例2、根據(jù)下列條件,分別求出對應的二次函數(shù)的關(guān)系式。
    (1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
    (2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
    (3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
    (4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
    分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
    解這個方程組,得a=2,b=-1。
    (2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
    (3)因為拋物線與x軸交于點m(-3,0)、(5,0),
    所以設(shè)二此函數(shù)的關(guān)系式為。
    又由于拋物線與y軸交于點(0,3),可以得到解得。
    (4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學們自己完成。
    (四)題組訓練,拓展遷移:
    1、根據(jù)下列條件,分別求出對應的二次函數(shù)的關(guān)系式。
    (1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
    (2)已知拋物線的頂點為(-1,2),且過點(2,1);
    (3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
    2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。
    (五)交流評價,深化知識:
    確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。
    (2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
    (3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
    本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
    (2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。
    二次函數(shù)數(shù)學教案篇十六
    (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
    【設(shè)計意圖】理論學習完二次函數(shù)的概念后,讓學生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應用到實踐操作中。
    (四)鞏固練習。
    1.已知一個直角三角形的兩條直角邊長的和是10cm。
    (1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
    (2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
    于x的函數(shù)關(guān)系式。
    【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。
    2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
    (1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
    【設(shè)計意圖】簡單的實際問題,學生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。
    (1)分別寫出c關(guān)于r;v關(guān)于r的函數(shù)關(guān)系式;。
    【設(shè)計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復習,并與今天所學知識聯(lián)系起來。
    4.籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
    【設(shè)計意圖】此題較前面幾題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠跳一跳,夠得到。
    (五)拓展延伸。
    1.已知二次函數(shù)y=ax2+bx+c,當x=0時,y=0;x=1時,y=2;x=-1時,y=1.求a、b、c,并寫出函數(shù)解析式.
    【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學做個鋪墊。
    2.確定下列函數(shù)中k的值。
    【設(shè)計意圖】此題著重復習二次函數(shù)的`特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.
    (六)小結(jié)思考:
    本節(jié)課你有哪些收獲?還有什么不清楚的地方?
    【設(shè)計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。
    (七)作業(yè)布置:
    必做題:
    2.在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
    選做題:
    2.試在平面直角坐標系畫出二次函數(shù)y=x2和y=-x2圖象。
    【設(shè)計意圖】作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。
    以實現(xiàn)教學目標為前提。
    以現(xiàn)代教育理論為依據(jù)。
    以現(xiàn)代信息技術(shù)為手段。
    貫穿一個原則以學生為主體的原則。
    突出一個特色充分鼓勵表揚的特色。
    滲透一個意識應用數(shù)學的意識。