2023年平方差公式教學(xué)設(shè)計(jì)(實(shí)用15篇)

字號(hào):

    總結(jié)是我們成長(zhǎng)道路上的必修課,讓我們更好地了解自己。怎樣才能將一段復(fù)雜的內(nèi)容簡(jiǎn)潔明了地總結(jié)出來(lái)?在下面的范文中,我們可以看到一些總結(jié)的寫(xiě)作技巧和思路,或者可以借鑒一些表達(dá)方式和結(jié)構(gòu)。
    平方差公式教學(xué)設(shè)計(jì)篇一
    總第課時(shí)。
    練習(xí)課。
    這一章的學(xué)習(xí),使學(xué)生掌握二元一次方程組的解法。
    2、學(xué)會(huì)解決實(shí)際問(wèn)題,分析問(wèn)題能力有所提高。
    這一章的知識(shí)點(diǎn),數(shù)學(xué)方法思想。
    實(shí)際應(yīng)用問(wèn)題中的等量關(guān)系。
    方法講練結(jié)合、探索交流課型新授課教具投影儀。
    方案一基本練習(xí)題。
    1、下列各組x,y的值是不是二元一次方程組的解?
    (1)(2)(3)。
    2、根據(jù)下表中所給的x值以及x與y的關(guān)系式,求出相應(yīng)的y值,然后填入表內(nèi):
    x12345678910。
    y=4x。
    y=10-x。
    根據(jù)上表找出二元一次方程組的的解。
    3、已知二元一次方程組的解。
    求a,b的值。
    4、解二元一次方程。
    (1)(2)。
    1.根據(jù)已知條件,求出y的值,分別填入下列各圖中,并找出方程組的解。
    2.寫(xiě)出一個(gè)二元一次方程,使得都是它的解,并且求出x=3時(shí)的方程的解。
    3.已知三角形的周長(zhǎng)是18cm,其中兩邊的和等于第三邊的2倍,而這兩邊的差等與第三邊的,求這個(gè)三角形的各邊長(zhǎng)。
    設(shè)三邊的長(zhǎng)分別是xcm,ycm,zcm。
    那么你會(huì)解這個(gè)方程組嗎?
    2、甲、乙兩地之間路程為20km,a,b兩人同時(shí)相對(duì)而行,2小時(shí)后相遇,相遇后a就返回甲地,b仍向甲地前進(jìn),a回到甲地時(shí),b離甲地還有2km,求a,b兩人速度。
    教學(xué)素材:
    a組題:
    1.已知x+y+(x-y+3)2=0,求x,y的值。
    2.若3m-2n-7=0,則6n-9m-6是多少?
    3.解方程組。
    (1)。
    (2)。
    5、給定兩數(shù)5與3,編一道通過(guò)列出二元一次方程組來(lái)求解的應(yīng)用題,并使得這個(gè)方程的解就是這兩個(gè)數(shù)。
    b組題:
    1、某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場(chǎng)上直接銷(xiāo)售,每噸可獲取利潤(rùn)500元,制成酸奶銷(xiāo)售,每噸可獲利潤(rùn)1200元,制成奶片銷(xiāo)售,每噸可獲利潤(rùn)2000元,該工廠的生產(chǎn)能力為:如制成酸奶,每天可加工3噸,制成奶片每天可加工1噸,受人員限制,兩種加工方式不能同時(shí)進(jìn)行,受氣溫條件限制,這批牛奶必須在4天內(nèi)全部銷(xiāo)售或加工完畢,為此,該加工廠設(shè)計(jì)了兩種可行性方案:
    方案一:盡可能多的制成奶片,其余直接銷(xiāo)售鮮牛奶。
    方案二:將一部分制成奶片,其余制成酸奶銷(xiāo)售,并恰好4天完成。
    你認(rèn)為選擇哪種方案獲利最多,為什么。
    (1)甲把a(bǔ)看成了什么,乙把b看成了什么。
    (2)求出原方程組的正確解。
    學(xué)生充分發(fā)表意見(jiàn)再根據(jù)學(xué)生的意見(jiàn)采用方法。
    學(xué)生板演。
    作業(yè)p103910。
    p1241314。
    板書(shū)設(shè)計(jì)。
    方案一方案二方案三。
    平方差公式教學(xué)設(shè)計(jì)篇二
    學(xué)習(xí)方法:歸納、概括、總結(jié)。
    創(chuàng)設(shè)問(wèn)題情境,引入新課。
    在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
    如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的一種因式分解的方法——公式法。
    1、請(qǐng)看乘法公式。
    (a+b)(a-b)=a2-b2(1)。
    左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)就是。
    a2-b2=(a+b)(a-b)(2)。
    利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
    a2-b2=(a+b)(a-b)。
    如x2-16。
    =(x)2-42。
    =(x+4)(x-4)。
    9m2-4n2。
    =(3m)2-(2n)2。
    =(3m+2n)(3m-2n)。
    例1、把下列各式分解因式:
    例2、把下列各式分解因式:。
    (1)9(m+n)2-(m-n)2;(2)2x3-8x.
    補(bǔ)充例題:判斷下列分解因式是否正確。
    (1)(a+b)2-c2=a2+2ab+b2-c2.
    (2)a4-1=(a2)2-1=(a2+1)(a2-1)。
    1、教科書(shū)習(xí)題。
    2、分解因式:x4-16x3-4x4x2-(y-z)2。
    3、若x2-y2=30,x-y=-5求x+y。
    平方差公式教學(xué)設(shè)計(jì)篇三
    平方差公式是多項(xiàng)式乘法運(yùn)算中一個(gè)重要的公式,是特殊的多項(xiàng)式與多項(xiàng)式相乘的一種簡(jiǎn)便計(jì)算。通過(guò)復(fù)習(xí)多項(xiàng)式乘以多項(xiàng)式的計(jì)算導(dǎo)入新課,為探究新知識(shí)奠定基礎(chǔ)。在重難點(diǎn)處設(shè)計(jì)問(wèn)題:“觀察以上3個(gè)算式的特點(diǎn)和運(yùn)算結(jié)果的特點(diǎn),對(duì)比等號(hào)兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學(xué)生發(fā)現(xiàn)規(guī)律并嘗試運(yùn)用自己的語(yǔ)言來(lái)描述。
    問(wèn)題提出后,學(xué)生能積極進(jìn)行分組討論、交流,各組小組長(zhǎng)闡述自己小組討論的結(jié)果。大多數(shù)的學(xué)生能找出規(guī)律,說(shuō)出大概意思,但是無(wú)法用精準(zhǔn)的語(yǔ)言完整的描述出來(lái),語(yǔ)言表達(dá)無(wú)條理、含糊。針對(duì)這種情況,在以后的課堂教學(xué)過(guò)程中要注意加強(qiáng)對(duì)學(xué)生的邏輯思維能力和語(yǔ)言表達(dá)能力的.培養(yǎng)。最后經(jīng)過(guò)師生的共同努力,得出了平方差公式以及公式的特征。
    在例題展示環(huán)節(jié)中,我通過(guò)2道例題的運(yùn)算,訓(xùn)練學(xué)生正確應(yīng)用公式進(jìn)行計(jì)算,體會(huì)公式在簡(jiǎn)化運(yùn)算中的作用。實(shí)踐練習(xí)的設(shè)計(jì),使學(xué)生從不同角度認(rèn)識(shí)平方差公式,進(jìn)一步加強(qiáng)學(xué)生對(duì)公式的理解。在運(yùn)用公式時(shí),學(xué)生基本掌握運(yùn)用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項(xiàng),最后運(yùn)用平方差公式運(yùn)算。
    拓展延伸環(huán)節(jié)中,學(xué)生通過(guò)尋找算式中的a,b項(xiàng),慢慢發(fā)現(xiàn)a,b項(xiàng)不僅可以代表數(shù),也可以代表單項(xiàng)式、多項(xiàng)式等代數(shù)式,這樣設(shè)計(jì)可以進(jìn)一步深化學(xué)生對(duì)字母含義的理解。在學(xué)生獨(dú)立完成練習(xí)和堂測(cè)中,經(jīng)過(guò)巡視,我發(fā)現(xiàn)近三分之一的學(xué)生對(duì)較復(fù)雜的多項(xiàng)式不能準(zhǔn)確找出a,b項(xiàng),特別是b項(xiàng)代表多項(xiàng)式時(shí),負(fù)數(shù)去括號(hào)時(shí)出錯(cuò)較多。
    最后通過(guò)設(shè)計(jì)遞進(jìn)式的問(wèn)題串,引導(dǎo)學(xué)生自己一步步總結(jié)出本節(jié)課所學(xué)的知識(shí)內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語(yǔ)言表達(dá)能力。
    本節(jié)課采用學(xué)習(xí)小組討論、交流的學(xué)習(xí)方式,讓學(xué)優(yōu)生帶動(dòng)學(xué)困生,整體教學(xué)效果良好,學(xué)生基本掌握平方差公式的運(yùn)用,對(duì)于較復(fù)雜的a、b項(xiàng)的運(yùn)算,在自習(xí)課上將加強(qiáng)練習(xí)。
    平方差公式教學(xué)設(shè)計(jì)篇四
    學(xué)生已經(jīng)掌握了多項(xiàng)式與多項(xiàng)式相乘,但是對(duì)于某些特殊的多項(xiàng)式相乘,可以寫(xiě)成公式的形式,直接寫(xiě)出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點(diǎn)內(nèi)容之一。
    平方差公式是第一個(gè)乘法公式,教學(xué)時(shí),我是這樣引入新課的,先計(jì)算下列各題,看誰(shuí)做的又對(duì)又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學(xué)生的好勝心并為進(jìn)一步探索新知搭建好有力的平臺(tái),然后我又讓學(xué)生討論交流上面幾個(gè)等式左、右兩邊各有什么特點(diǎn),你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語(yǔ)言敘述這個(gè)規(guī)律嗎?給學(xué)生充分的觀察、分析、討論交流的時(shí)間,老師應(yīng)及時(shí)的給與必要的指導(dǎo)、鼓勵(lì)和由衷的贊美,這一點(diǎn)我做的還很不夠,今后要多多注意。
    然后我有設(shè)計(jì)了這樣一道題:下列多項(xiàng)式乘法中可以用平方差公式計(jì)算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學(xué)生理解公式的特征,掌握公式的。特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過(guò)程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
    平方差公式教學(xué)設(shè)計(jì)篇五
    三、教學(xué)目標(biāo)。
    通過(guò)幾方面的合力,提高學(xué)生歸納概括、邏輯推理等核心素養(yǎng)水平.。
    四、教學(xué)重難點(diǎn)。
    五、信息技術(shù)應(yīng)用思路。
    1.本課運(yùn)用了信息技術(shù)輔助教學(xué),主要使用的技術(shù)有:ppt課件、幾何畫(huà)板.。
    (一)創(chuàng)設(shè)情境,導(dǎo)入課題。
    你能用簡(jiǎn)便的方法計(jì)算出它的面積嗎?看誰(shuí)算得快:
    師生活動(dòng):學(xué)生欣賞圖片,感受生活中的數(shù)學(xué)問(wèn)題,并進(jìn)行生活中的數(shù)學(xué)向數(shù)學(xué)模型轉(zhuǎn)換.。
    (二)探索新知,嘗試發(fā)現(xiàn)。
    計(jì)算下列多項(xiàng)式的積,你能發(fā)現(xiàn)什么規(guī)律?
    (1)(m+1)(m-1)=;
    (2)(5+x)(5-x)=;
    (3)(2x+1)(2x-1)=.。
    師生活動(dòng):學(xué)生在教師的引導(dǎo)下,通過(guò)小組討論探究,進(jìn)行多項(xiàng)式的乘法,計(jì)算出結(jié)論.。
    信息技術(shù)支持:ppt動(dòng)畫(huà)演示.。
    結(jié)論是一個(gè)平方減去另一個(gè)平方的形式,效果十分鮮明.。
    (三)總結(jié)歸納,發(fā)現(xiàn)新知。
    問(wèn)題3:依照以上三道題的計(jì)算回答下列問(wèn)題:
    (1)式子的左邊具有什么共同特征?
    (2)它們的結(jié)果有什么特征?
    (3)能不能用字母表示你的發(fā)現(xiàn)?
    問(wèn)題4:你能用文字語(yǔ)言表示所發(fā)現(xiàn)的規(guī)律嗎?
    (四)數(shù)形結(jié)合,幾何說(shuō)理。
    提示:a2-b2與(a+b)(a-b)都可表示該圖形的面積.。
    (五)剖析公式,發(fā)現(xiàn)本質(zhì)。
    (六)鞏固運(yùn)用,內(nèi)化新知。
    問(wèn)題6:判斷下列算式能否運(yùn)用平方差公式計(jì)算:
    (1)(2x+3a)(2x–3b);
    (2)(-m+n)(m-n).。
    (1)(3x+2y)(3x-2y);
    (2)(-7+2m2)(-7-2m2).。
    信息技術(shù)支持:ppt展示書(shū)寫(xiě)步驟,有利于節(jié)省時(shí)間,提高效率,規(guī)范學(xué)生書(shū)寫(xiě).。
    (七)拓展應(yīng)用,強(qiáng)化思維。
    問(wèn)題8:利用平方差公式計(jì)算情景導(dǎo)航中提出的問(wèn)題:
    信息技術(shù)支持:ppt展示書(shū)寫(xiě)步驟,有利于節(jié)省時(shí)間.。
    (八)總結(jié)概括,自我評(píng)價(jià)。
    問(wèn)題10:這節(jié)課你有哪些收獲?還有什么困惑?
    提示:從知識(shí)和情感態(tài)度兩個(gè)方面加以小結(jié).。
    師生活動(dòng):使學(xué)生對(duì)本節(jié)課的知識(shí)有一個(gè)系統(tǒng)全面的認(rèn)識(shí),分組討論后交流.。
    (九)課后作業(yè)。
    1.必做題:課本p36習(xí)題2.1a組1、2.。
    2.選做題:課本p36習(xí)題2.1b組1、2.。
    作業(yè)分層處理有較大的彈性,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,尊重學(xué)生的個(gè)體差異.。
    七、教學(xué)反思。
    平方差公式教學(xué)設(shè)計(jì)篇六
    平方差公式與完全平方公式是初中數(shù)學(xué)代數(shù)學(xué)知識(shí)方面應(yīng)用最廣泛的公式,也是學(xué)生代數(shù)運(yùn)算的基礎(chǔ)公式,在今后的數(shù)學(xué)學(xué)習(xí)過(guò)程中,更能體現(xiàn)其重要性,所以這兩個(gè)公式的教學(xué)要求很高,需要每一名學(xué)生都必須熟練掌握這兩個(gè)公式,并因此可以靈活運(yùn)用公式進(jìn)行因式分解和分解因式,解決很多代數(shù)問(wèn)題。
    如同勾股定理在全世界數(shù)學(xué)基礎(chǔ)教學(xué)中地位顯著,全世界各地?cái)?shù)學(xué)教科書(shū)都要求學(xué)生掌握一樣,平方差公式與完全平方公式也是全世界以致全國(guó)各地教科書(shū)都必講必學(xué)的內(nèi)容之一,作為整式的乘法公式,人教版教科書(shū)把平方差公式與完全平方公式安排在整式的乘法這一章的第二節(jié),在第一節(jié)內(nèi)容上先讓學(xué)生掌握整式乘法的各項(xiàng)法則,當(dāng)學(xué)生熟練掌握多項(xiàng)式與多項(xiàng)式的乘法后,再由此讓學(xué)生來(lái)學(xué)生我們的乘法公式,本節(jié)內(nèi)容分兩部分,先介紹平方差公式,再介紹完全平方公式。
    在學(xué)生熟練掌握多項(xiàng)式與多項(xiàng)式的乘法后,開(kāi)始介紹平方差公式,教科書(shū)上是由找規(guī)律開(kāi)始,讓學(xué)生利用多項(xiàng)式乘法法則計(jì)算,從而發(fā)現(xiàn)平方差公式,由找規(guī)律得出公式的猜想,再介紹平方差公式的幾何面積驗(yàn)證方法,來(lái)驗(yàn)證公式猜想的正確性,從而由代數(shù)探究及幾何論證來(lái)得出平方差公式,得出公式后再來(lái)實(shí)際應(yīng)用。
    我一直嚴(yán)格要求自己,認(rèn)真?zhèn)浣滩模?dāng)然也認(rèn)真?zhèn)鋵W(xué)生,使課堂教學(xué)符合學(xué)生的實(shí)際需要。學(xué)生基礎(chǔ)較差,教學(xué)內(nèi)容要求生動(dòng)、易學(xué)易懂,讓學(xué)生能在活動(dòng)教學(xué)中進(jìn)行簡(jiǎn)單探究從而掌握好基礎(chǔ)知識(shí)。,我認(rèn)真準(zhǔn)備,仔細(xì)研讀教材,精心制作出課件和教案,按教科書(shū)的教學(xué)順序和過(guò)程,既安排學(xué)生計(jì)算上的運(yùn)算探究猜想,又安排幾何實(shí)踐剪紙法,利用面積來(lái)驗(yàn)證公式。我從實(shí)際問(wèn)題出發(fā),給出動(dòng)手操作的實(shí)際幾何問(wèn)題引出本課,得出平方差公式的猜想,讓學(xué)生動(dòng)手實(shí)踐,數(shù)形結(jié)合得出平方差公式,在利用多項(xiàng)式的乘法法則計(jì)算驗(yàn)證,最后辨析、應(yīng)用,讓學(xué)生熟悉平方差公式,最后應(yīng)用提高,給出實(shí)際生活中的一個(gè)問(wèn)題,利用平方差公式計(jì)算較大的數(shù)字,讓學(xué)生明白學(xué)習(xí),平方差公式不但可以在實(shí)際生活中運(yùn)用,而且還可以簡(jiǎn)便計(jì)算,激發(fā)學(xué)生對(duì)平方差公式學(xué)習(xí)的興趣,從而很好地掌握好平方差公式。最后再進(jìn)行小結(jié),反饋。
    平方差公式教學(xué)設(shè)計(jì)篇七
    本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過(guò)預(yù)設(shè)的問(wèn)題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問(wèn)題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。
    讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過(guò)質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過(guò)例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。
    本節(jié)課是運(yùn)用提公因式法后公式法的第一課時(shí)——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計(jì)算的知識(shí)的基礎(chǔ)上充分認(rèn)識(shí)分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛(ài)思考,善交流的良好學(xué)習(xí)慣。
    (一)知識(shí)與技能。
    2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
    (二)過(guò)程與方法。
    1.經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。
    2.通過(guò)乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類(lèi)比、概括等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。
    3.通過(guò)活動(dòng)4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。
    4.通過(guò)活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
    5.通過(guò)活動(dòng)4,讓學(xué)生自己發(fā)現(xiàn)問(wèn)題,提出問(wèn)題,然后解決問(wèn)題,體會(huì)在解決問(wèn)題的過(guò)程中與他人合作的重要性。
    (三)情感與態(tài)度。
    1.通過(guò)探究平方差公式,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自己信心。
    平方差公式教學(xué)設(shè)計(jì)篇八
    本節(jié)課采用情景—探究的方式,以猜想、實(shí)驗(yàn)、論證為主要探究方式,得出平方差公式,應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先提醒學(xué)生要注意其特征,其次要做好式子的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái),應(yīng)用公式法因式分解的過(guò)程,實(shí)際上就是轉(zhuǎn)化和化歸的過(guò)程。在解決認(rèn)識(shí)平方差公式的`結(jié)構(gòu)時(shí)候,重點(diǎn)突出學(xué)生自我思想的形成,能夠充分地不公式用自己的語(yǔ)言來(lái)敘述,在整個(gè)教學(xué)設(shè)計(jì)中,教師只作為了一個(gè)點(diǎn)撥者和引路人。然后應(yīng)用有梯度的典型例題加以鞏固,在學(xué)生頭腦中形成一個(gè)清晰完整的數(shù)學(xué)模型,使學(xué)生在今后的練習(xí)中游刃有余。
    不足之處:
    教學(xué)中時(shí)間把握還是不足,在設(shè)計(jì)的題目中不怎么合理,應(yīng)按題目的難度從易到難。
    有些題目的歸納可放手給學(xué)生討論后由學(xué)生說(shuō)出,而不是教師代替。小組評(píng)價(jià)做的不夠,沒(méi)有足夠的小組的活動(dòng),沒(méi)有小組的競(jìng)賽。
    教學(xué)語(yǔ)言還太隨意,數(shù)學(xué)的語(yǔ)言應(yīng)該嚴(yán)謹(jǐn)。在語(yǔ)調(diào)上應(yīng)該有所變化。
    平方差公式教學(xué)設(shè)計(jì)篇九
    指導(dǎo)學(xué)生用語(yǔ)言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個(gè)公式叫做平方差公式。
    指導(dǎo)學(xué)生發(fā)現(xiàn)公式的特點(diǎn):
    1、左邊為兩數(shù)的和乘以?xún)蓴?shù)的差,即在左邊是兩個(gè)二項(xiàng)式的積,在這兩個(gè)二項(xiàng)式中有一項(xiàng)(a)完全相同,另一項(xiàng)(b與-b)互為相反數(shù)。右邊為這兩個(gè)數(shù)的平方差即完全相同的項(xiàng)的平方減去符號(hào)相反的平方。
    2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項(xiàng)式,多項(xiàng)式等代數(shù)式。
    提醒學(xué)生利用平方公式計(jì)算,首先觀察是否符合公式的特點(diǎn),這兩個(gè)數(shù)分別是什么,其次要區(qū)別相同的項(xiàng)和相反的項(xiàng),表示兩數(shù)平方差時(shí)要加括號(hào)。
    平方差公式教學(xué)設(shè)計(jì)篇十
    教師講課語(yǔ)言清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。
    乘法公式的引入,使學(xué)生既復(fù)習(xí)了多項(xiàng)式的乘法運(yùn)算,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。課堂教學(xué)中充分體現(xiàn)了以點(diǎn)撥為主的教學(xué)。對(duì)于公式的性能?chē)?yán)格要求學(xué)生理解,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿(mǎn)足了不同層次的學(xué)生的學(xué)習(xí)。
    一點(diǎn)建議:
    1、引入時(shí),還可以安排得生動(dòng)一點(diǎn),可以先設(shè)疑,提出問(wèn)題,讓學(xué)生探討,猜想,歸納,以激發(fā)學(xué)生更高的學(xué)習(xí)興趣,或采用多題的多項(xiàng)式乘法運(yùn)算,當(dāng)學(xué)生感到有些“煩“時(shí),讓學(xué)生猜想這類(lèi)運(yùn)算能否運(yùn)用簡(jiǎn)單的結(jié)論來(lái)得出,從而使學(xué)生感到今天要學(xué)的內(nèi)容的重要性,這樣學(xué)生的學(xué)習(xí)將更主動(dòng)。
    2、剛才說(shuō)過(guò)語(yǔ)言清晰,但不夠精煉,尤其在總結(jié)公式特征時(shí),未能用簡(jiǎn)練的語(yǔ)言描述出特征,以致學(xué)生在完成例題和練習(xí)題的過(guò)程中,對(duì)在運(yùn)用公式之前需要變型的題型,出錯(cuò)率較高。其實(shí)平方差公式的特征就是有兩項(xiàng)相同,而另兩項(xiàng)恰恰是互為相反數(shù)或項(xiàng)。相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同項(xiàng)的平方減去相反項(xiàng)的平方。
    3、對(duì)于平方差公式的幾何意義,敢于讓學(xué)生大膽上黑板演示是好的,但過(guò)程繁瑣,缺乏精煉,直觀,不能讓大部分學(xué)生弄懂。這時(shí)我們老師應(yīng)該給出恰當(dāng)準(zhǔn)確的解釋。
    以上是我的淺顯認(rèn)識(shí),不妥之處,還望楊老師海涵,大家批評(píng)。
    平方差公式教學(xué)設(shè)計(jì)篇十一
    《平方差公式》這一節(jié)重點(diǎn)和難點(diǎn)就在于結(jié)構(gòu)的不變性和字母的可變性。因此我的教學(xué)設(shè)計(jì)思想是從讓每一位學(xué)生理解和掌握公式結(jié)構(gòu)的不變性和字母的可變性從而達(dá)到熟練運(yùn)用的目的。只是在具體的教學(xué)手段和措施及側(cè)重點(diǎn)上有所區(qū)別。雖然如此,我個(gè)人認(rèn)為基本目標(biāo)已經(jīng)達(dá)到,也取得了初步成效,尤其是對(duì)易錯(cuò)點(diǎn)的側(cè)重讓學(xué)生記憶深刻效果更明顯。
    具體來(lái)說(shuō),成功之處我們都基本實(shí)現(xiàn)了教學(xué)目標(biāo),突出了教學(xué)重難點(diǎn),教學(xué)過(guò)程環(huán)環(huán)相扣,題目設(shè)計(jì)逐層深入,及時(shí)反饋學(xué)習(xí)效果,精講多練?;緦?shí)現(xiàn)了預(yù)想的效果。我自認(rèn)為該課成功之處主要體現(xiàn)在:
    1、課前準(zhǔn)備充分,教學(xué)設(shè)計(jì)合理充實(shí),有很強(qiáng)的實(shí)用性和創(chuàng)造性。
    2、導(dǎo)入新穎,從小故事出發(fā),激發(fā)學(xué)生興趣,給學(xué)生留下懸念,同時(shí)對(duì)平方差公式有了初步的感性認(rèn)識(shí),從而揭示課題。然后再通過(guò)一系列的探索和練習(xí)以及公式的幾何解釋?zhuān)箤W(xué)生對(duì)新知識(shí)的理解由感性認(rèn)識(shí)到理性認(rèn)識(shí)的過(guò)渡。
    3、選題合理、有針對(duì)性和層次性。在鞏固練習(xí)中通過(guò)像(x+y)(x-y)這種簡(jiǎn)單的套公式題型逐漸轉(zhuǎn)換到涉及帶負(fù)號(hào)的變式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)這樣的題型,通過(guò)各類(lèi)變式和判斷及找錯(cuò)的題型問(wèn)題的暴露,及時(shí)處理。使得學(xué)生逐步加深對(duì)公式結(jié)構(gòu)的理解和記憶。然后轉(zhuǎn)回到課前給學(xué)生留下的疑問(wèn),最后實(shí)現(xiàn)創(chuàng)新,用簡(jiǎn)便方法計(jì)算像2002×1998.使得整個(gè)課堂容量大,充實(shí)。
    進(jìn)的例題練習(xí)讓學(xué)生逐步理解公式中字母的可變性。最后達(dá)到對(duì)公式的全面和深刻的理解和掌握,使公式的運(yùn)用得到升華。
    5、本節(jié)課的重點(diǎn)和難點(diǎn)就是在于結(jié)構(gòu)的不變性和字母的可變性。我就側(cè)重運(yùn)用公式時(shí)的易錯(cuò)點(diǎn)。不僅在訓(xùn)練期間多次強(qiáng)調(diào)的方式提醒學(xué)生易錯(cuò)點(diǎn),相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同相的平方減去相反項(xiàng)的平方,平方時(shí)底是單項(xiàng)式但系數(shù)不是1或底數(shù)是多項(xiàng)式時(shí)不要忘記打上括號(hào),而且在最后的小結(jié)中給學(xué)生總結(jié)更是讓學(xué)生影響深刻。
    6、對(duì)公式進(jìn)行幾何意義的解釋?zhuān)彝ㄟ^(guò)直觀演示操作,將學(xué)生不易理解的問(wèn)題,使它變得直觀,從而顯得簡(jiǎn)單。
    3、課堂效率有待提高。
    改進(jìn)方向:1、繼續(xù)加強(qiáng)平時(shí)的“生本”理念的灌輸和學(xué)生討論、發(fā)言的培訓(xùn)和鼓勵(lì)。
    2、教學(xué)設(shè)計(jì)時(shí)更全面、深入地考慮學(xué)生的問(wèn)題也就是備課備學(xué)生。
    3、加強(qiáng)對(duì)學(xué)生發(fā)現(xiàn)問(wèn)題、總結(jié)規(guī)律、提出疑問(wèn)等課堂效果體現(xiàn)的關(guān)鍵環(huán)節(jié)。
    的培訓(xùn)。
    4、課堂教學(xué)注重多措施了解學(xué)生學(xué)習(xí)效果的反饋。俗話說(shuō):“金無(wú)足赤,人無(wú)完人”。一節(jié)課上得再好,還是有些問(wèn)題沒(méi)有考慮到,以上四本人的自我剖析,有的地方做的不是很完美,敬請(qǐng)各位同仁批評(píng)指正,本人一定笑納,并表示感謝。
    平方差公式教學(xué)設(shè)計(jì)篇十二
    平方差公式是在學(xué)習(xí)多項(xiàng)式乘法等知識(shí)的基礎(chǔ)上,自然過(guò)渡到具有特殊形式的多項(xiàng)式的乘法,體現(xiàn)教材從一般到特殊的意圖。教材為學(xué)生在教學(xué)活動(dòng)中獲得數(shù)學(xué)的思想方法、能力、素質(zhì)提供了良好的契機(jī)。對(duì)它的學(xué)習(xí)和研究,不僅得到了特殊的多項(xiàng)式乘法的簡(jiǎn)便算法,而且為以后的因式分解,分式的化簡(jiǎn)、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ),同時(shí)也為完全平方公式的學(xué)習(xí)提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個(gè)重要的公式。
    學(xué)生是在學(xué)習(xí)積的乘方和多項(xiàng)式乘多項(xiàng)式后學(xué)習(xí)平方差公式的,但在進(jìn)行積的乘方的運(yùn)算時(shí),底數(shù)是數(shù)與幾個(gè)字母的積時(shí)往往把括號(hào)漏掉,在進(jìn)行多項(xiàng)式乘法運(yùn)算時(shí)常常會(huì)確定錯(cuò)某些次符號(hào)及漏項(xiàng)等問(wèn)題。學(xué)生學(xué)習(xí)平方差公式的困難在于對(duì)公式的結(jié)構(gòu)特征以及公式中字母的廣泛的理解,當(dāng)公式中a、b是式時(shí),要把它括號(hào)在平方。
    難點(diǎn):理解掌握平方差公式的結(jié)構(gòu)特點(diǎn)以及靈活運(yùn)用平方差公式解決實(shí)際問(wèn)題.。
    平方差公式教學(xué)設(shè)計(jì)篇十三
    本周聽(tīng)了滿(mǎn)老師的一節(jié)數(shù)學(xué)課,這節(jié)課是滿(mǎn)老師安排的一節(jié)乘法公式——平方差公式的新授課,這節(jié)課給我留下了深刻的影響。
    教師講課語(yǔ)言清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。乘法公式的引入,使學(xué)生既復(fù)習(xí)了多項(xiàng)式的乘法運(yùn)算,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。課堂教學(xué)中充分體現(xiàn)了以點(diǎn)撥為主的教學(xué)。對(duì)于公式的性能?chē)?yán)格要求學(xué)生理解,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿(mǎn)足了不同層次的學(xué)生的學(xué)習(xí)。一點(diǎn)建議:
    1、引入時(shí),還可以安排得生動(dòng)一點(diǎn),可以先設(shè)疑,提出問(wèn)題,讓學(xué)生探討,猜想,歸納,以激發(fā)學(xué)生更高的學(xué)習(xí)興趣,或采用多題的多項(xiàng)式乘法運(yùn)算,當(dāng)學(xué)生感到有些“煩“時(shí),讓學(xué)生猜想這類(lèi)運(yùn)算能否運(yùn)用簡(jiǎn)單的結(jié)論來(lái)得出,從而使學(xué)生感到今天要學(xué)的內(nèi)容的重要性,這樣學(xué)生的學(xué)習(xí)將更主動(dòng)。
    2、剛才說(shuō)過(guò)語(yǔ)言清晰,但不夠精煉,尤其在總結(jié)公式特征時(shí),未能用簡(jiǎn)練的語(yǔ)言描述出特征,以致學(xué)生在完成例題和練習(xí)題的過(guò)程中,對(duì)在運(yùn)用公式之前需要變型的題型,出錯(cuò)率較高。其實(shí)平方差公式的特征就是有兩項(xiàng)相同,而另兩項(xiàng)恰恰是互為相反數(shù)或項(xiàng)。相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同項(xiàng)的平方減去相反項(xiàng)的平方。
    3、對(duì)于平方差公式的幾何意義,敢于讓學(xué)生大膽上黑板演示是好的,但過(guò)程繁瑣,缺乏精煉,直觀,不能讓大部分學(xué)生弄懂。這時(shí)我們老師應(yīng)該給出恰當(dāng)準(zhǔn)確的解釋。
    平方差公式教學(xué)設(shè)計(jì)篇十四
    教學(xué)目標(biāo):
    一、知識(shí)與技能。
    1、參與探索平方差公式的過(guò)程,發(fā)展學(xué)生的推理能力2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的乘法運(yùn)算。
    二、過(guò)程與方法。
    1、經(jīng)歷探索過(guò)程,學(xué)會(huì)歸納推導(dǎo)出某種特種特定類(lèi)型乘法并用簡(jiǎn)單的。
    數(shù)學(xué)式子表達(dá)出,即給出公式。
    2、在探索過(guò)程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。
    號(hào)感和語(yǔ)言描述能力。
    三、情感與態(tài)度。
    以探索、歸納公式和簡(jiǎn)單運(yùn)用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗(yàn),增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗(yàn)證-使用這一數(shù)學(xué)方法的逐步形成.
    教學(xué)重點(diǎn):公式的簡(jiǎn)單運(yùn)用。
    教學(xué)難點(diǎn):公式的推導(dǎo)。
    教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。
    課前準(zhǔn)備:投影儀、幻燈片。
    平方差公式教學(xué)設(shè)計(jì)篇十五
    進(jìn)一步使學(xué)生理解掌握平方差公式,并通過(guò)小結(jié)使學(xué)生理解公式數(shù)學(xué)表達(dá)式與文字表達(dá)式在應(yīng)用上的差異.
    教學(xué)重點(diǎn)和難點(diǎn):公式的應(yīng)用及推廣.
    1.(1)用較簡(jiǎn)單的代數(shù)式表示下圖紙片的面積.
    (2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個(gè)矩形,并用代數(shù)式表示出你新拼圖形的面積.
    講評(píng)要點(diǎn):
    沿hd、gd裁開(kāi)均可,但一定要讓學(xué)生在裁開(kāi)之前知道。
    hd=bc=gd=fe=a-b,
    這樣裁開(kāi)后才能重新拼成一個(gè)矩形.希望推出公式:
    a2-b2=(a+b)(a-b)。
    2.(1)敘述平方差公式的數(shù)學(xué)表達(dá)式及文字表達(dá)式;。
    (2)試比較公式的兩種表達(dá)式在應(yīng)用上的差異.
    說(shuō)明:平方差公式的數(shù)學(xué)表達(dá)式在使用上有三個(gè)優(yōu)點(diǎn).(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡(jiǎn)潔.但數(shù)學(xué)表達(dá)式中的a與b有概括性及抽象性,這樣也就造成對(duì)具體問(wèn)題存在一個(gè)判定a、b的`問(wèn)題,否則容易對(duì)公式產(chǎn)生各種主觀上的誤解.
    依照公式的文字表達(dá)式可寫(xiě)出下面兩個(gè)正確的式子:
    經(jīng)對(duì)比,可以讓人們體會(huì)到公式的文字表達(dá)式抽象、準(zhǔn)確、概括.因而也就“欠”明確(如結(jié)果不知是誰(shuí)與誰(shuí)的平方差).故在使用平方差公式時(shí),要全面理解公式的實(shí)質(zhì),靈活運(yùn)用公式的兩種表達(dá)式,比如用文字公式判斷一個(gè)題目能否使用平方差公式,用數(shù)學(xué)公式確定公式中的a與b,這樣才能使自己的計(jì)算即準(zhǔn)確又靈活.
    3.判斷正誤:
    (1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
    (3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
    (1)102×98;(2)(y+2)(y-2)(y2+4).
    解:(1)102×98(2)(y+2)(y-2)(y2+4)。
    =(100+2)(100-2)=(y2-4)(y2+4)。
    =9996;。
    (1)103×97;(2)(x+3)(x-3)(x2+9);。
    (3)59.8×60.2;(4)(x-)(x2+)(x+).
    3.請(qǐng)每位同學(xué)自編兩道能運(yùn)用平方差公式計(jì)算的題目.
    例2填空:
    思考題:什么樣的二項(xiàng)式才能逆用平方差公式寫(xiě)成兩數(shù)和與這兩數(shù)的差的積?
    (某兩數(shù)平方差的二項(xiàng)式可逆用平方差公式寫(xiě)成兩數(shù)和與這兩數(shù)的差的積)。
    練習(xí)。
    填空:
    1.x2-25=()();。
    2.4m2-49=(2m-7)();。
    3.a4-m4=(a2+m2)()=(a2+m2)()();。
    例3計(jì)算:
    (1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
    解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
    =[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
    =(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
    =m4-14m2+49-n2.
    1.什么是平方差公式?一般兩個(gè)二項(xiàng)式相乘的積應(yīng)是幾項(xiàng)式?
    3.怎樣判斷一個(gè)多項(xiàng)式的乘法問(wèn)題是否可以用平方差公式?
    (1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
    (3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
    (1)69×71;(2)53×47;(3)503×497;(4)40×39.