初二數(shù)學(xué)教案一次函數(shù)(通用19篇)

字號:

    教案可以促進(jìn)教師的專業(yè)成長,提高教學(xué)能力。在編寫教案時,教師要適當(dāng)安排時間,確保教學(xué)進(jìn)度。教案范文中的評價方式和教學(xué)反思也給我們提供了很好的借鑒。
    初二數(shù)學(xué)教案一次函數(shù)篇一
    一、學(xué)生情況分析及改進(jìn)提高措施:
    學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的.能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實,對數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動中去,特別是對一些動手操作,合作學(xué)習(xí),實踐活動等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計一些活動,引導(dǎo)學(xué)生進(jìn)行獨立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動的經(jīng)驗。
    在數(shù)學(xué)知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學(xué)會了辨認(rèn)八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應(yīng)的知識解決實際生活中的問題??傊@些技能和知識點都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識打下了堅實的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對數(shù)學(xué)的感悟能力會在本學(xué)期進(jìn)一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。
    具體提高措施是:
    1.從學(xué)生的年齡特點出發(fā),多采用情境活動式教學(xué),培養(yǎng)學(xué)生的參與意識。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動中去,絕大部分學(xué)生能夠在課堂上主動的研究問題,獲取知識。
    2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結(jié)合學(xué)生的生活實際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。
    3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實踐練習(xí),加強各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。
    4.加強學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時學(xué)習(xí)情況,與學(xué)生家長多溝通交流。
    二、本冊教材分析。
    本冊教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動實踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實問題的過程中獲得對數(shù)學(xué)知識的理解和體驗。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復(fù)習(xí),一個總復(fù)習(xí)。具體特點是:
    1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動手操作與抽象概括相結(jié)合,體驗乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號感。
    2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。
    3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計。
    三、總體教學(xué)目標(biāo):
    (一)、知識與技能。
    1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。
    2.學(xué)平面圖形的周長,會進(jìn)行周長的計算。
    (二)、實踐能力培養(yǎng)。
    1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。
    2.結(jié)合生活情境,感受并認(rèn)識質(zhì)量單位。
    3.經(jīng)歷對生活中某些現(xiàn)象進(jìn)行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。
    (三)、情感與態(tài)度。
    1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動中,能夠感受到思考的條理性和合理性。
    2、教師重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
    教研專題:
    創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識。
    個人專題:
    在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識,提高課堂的有效性。
    初二數(shù)學(xué)教案一次函數(shù)篇二
    一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
    初二數(shù)學(xué)教案一次函數(shù)篇三
    2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解.
    【能力目標(biāo)】通過學(xué)生的思考和操作,在力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力.
    【情感目標(biāo)】通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強了新舊知識的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
    2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。
    【教學(xué)難點】方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。
    初二數(shù)學(xué)教案一次函數(shù)篇四
    2、過程與方法。
    經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維、
    3、情感、態(tài)度與價值觀。
    培養(yǎng)變量與對應(yīng)的,形成良好的函數(shù)觀點,體會一次函數(shù)的應(yīng)用價值、
    1、重點:一次函數(shù)的應(yīng)用、
    2、難點:一次函數(shù)的應(yīng)用、
    3、關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維、
    采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的。應(yīng)用、
    y=。
    拓展:若a城有肥料300噸,b城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運?
    課本p119練習(xí)、
    由學(xué)生自我本節(jié)課的表現(xiàn)、
    課本p120習(xí)題14、2第9,10,11題、
    1、一次函數(shù)的應(yīng)用例:
    練習(xí):
    初二數(shù)學(xué)教案一次函數(shù)篇五
    2、能正確且較為熟練地運用去括號的符號法則去化簡代數(shù)式過程與方法目標(biāo)學(xué)習(xí)目標(biāo)。
    1、通過觀察、合作交流、討論總結(jié)等活動得出去括號的符號法則,培養(yǎng)學(xué)生觀察、分析、總結(jié)的能力。
    2、通過例題講解,和鞏固練習(xí),培養(yǎng)學(xué)生的計算能力班級:初一四班nn。
    1、數(shù)學(xué)知識:
    2、數(shù)學(xué)思想方法:布置作業(yè):板書設(shè)計nn教學(xué)反思nn。
    初二數(shù)學(xué)教案一次函數(shù)篇六
    2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。
    3、解方程(組),求出待定系數(shù);。
    4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
    例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
    (1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標(biāo)。
    分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標(biāo)時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標(biāo).
    解:(1)設(shè)函數(shù)解析式為y=kx+b.
    (2)當(dāng)y=0時x=3,當(dāng)x=0時y=-3。可得直線與x軸交點(3,0)、與y軸交點(0,-3)。
    評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
    初二數(shù)學(xué)教案一次函數(shù)篇七
    一次函數(shù)的圖像與性質(zhì)的口訣:
    一次函數(shù)是直線,圖像經(jīng)過三象限;。
    正比例函數(shù)更簡單,經(jīng)過原點一直線;。
    兩個系數(shù)k與b,作用之大莫小看,
    k是斜率定夾角,b與y軸來相見,
    k為正來右上斜,x增減y增減;。
    k為負(fù)來左下展,變化規(guī)律正相反;。
    k的絕對值越大,線離橫軸就越遠(yuǎn)。
    初二數(shù)學(xué)教案一次函數(shù)篇八
    1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。
    2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
    3.逐步掌握說理的基本方法。
    過程與方法目標(biāo)。
    1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。
    2.鼓勵學(xué)生用多種方法進(jìn)行說理。
    情感與態(tài)度目標(biāo)。
    1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。
    2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強學(xué)生的自我評價意識。
    教材分析。
    教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。
    教學(xué)重點:平行四邊形的判別方法。
    教學(xué)難點:利用平行四邊形的判別方法進(jìn)行正確的說理。
    學(xué)情分析。
    初二學(xué)生對平面圖形的認(rèn)識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。
    教學(xué)流程。
    一、創(chuàng)設(shè)情境,引入新課。
    師:請同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
    學(xué)生活動:學(xué)生按小組進(jìn)行探索。
    初二數(shù)學(xué)教案一次函數(shù)篇九
    知識與技能:
    進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題;。
    過程與方法。
    在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維;在解決實際問題過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
    情感態(tài)度與價值觀:
    在現(xiàn)實問題的解決中,使學(xué)生初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
    教學(xué)重點。
    教學(xué)難點。
    從函數(shù)圖象中正確讀取信息。
    教學(xué)過程:
    一、情境引入。
    一農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系,如圖所示,結(jié)合圖象回答下列問題.
    (1)農(nóng)民自帶的零錢是多少?
    (2)試求降價前y與x之間的關(guān)系。
    (3)由表達(dá)式你能求出降價前每千克的土豆價格是多少?
    二、問題解決。
    l1反映了某公司產(chǎn)品的銷售收入與銷售量的關(guān)系,l2反映了該公司產(chǎn)品的銷售成本與銷售量的關(guān)系,根據(jù)圖意填空:
    初二數(shù)學(xué)教案一次函數(shù)篇十
    一、學(xué)生起點分析:
    學(xué)生的知識技能基礎(chǔ):學(xué)生能夠正確解方程(組),初步掌握了一次函數(shù)及其圖像的基礎(chǔ)知識,已經(jīng)具備了函數(shù)的初步思想,對于數(shù)形結(jié)合的數(shù)學(xué)思想也有所接觸。
    學(xué)生的活動經(jīng)驗基礎(chǔ):學(xué)生能夠根據(jù)已知條件準(zhǔn)確畫出一次函數(shù)圖象,能夠認(rèn)識和接受函數(shù)解析式與二元一次方程之間的互相轉(zhuǎn)換.在過去已有經(jīng)驗基礎(chǔ)上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認(rèn)識,有小組合作學(xué)習(xí)經(jīng)驗.
    二、學(xué)習(xí)任務(wù)分析:
    本節(jié)課的主要內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用.通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力.因此確定本節(jié)課的教學(xué)目標(biāo)為:
    2.掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;。
    3.發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
    教學(xué)重點。
    教學(xué)難點。
    數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
    四、教法學(xué)法。
    1.教法學(xué)法。
    啟發(fā)引導(dǎo)與自主探索相結(jié)合.
    2.課前準(zhǔn)備。
    教具:多媒體課件、三角板.
    學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
    五、教學(xué)過程。
    本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立“方程與函數(shù)圖像”的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置.
    初二數(shù)學(xué)教案一次函數(shù)篇十一
    正比例函數(shù)的概念.
    2.內(nèi)容解析。
    一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗.
    對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.
    本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進(jìn)行辨析,對實際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.
    基于以上分析,確定本節(jié)課的教學(xué)重點:正比例函數(shù)的概念.
    二、目標(biāo)和目標(biāo)解析。
    1.目標(biāo)。
    (1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;。
    (2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想.
    2.目標(biāo)解析。
    達(dá)成目標(biāo)(1)的標(biāo)志是:通過對實際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.
    達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想.
    三、教學(xué)問題診斷分析。
    正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實際問題進(jìn)行分析過程中,需進(jìn)一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度.
    因此本節(jié)課的教學(xué)難點是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程.
    四、教學(xué)過程設(shè)計。
    1.情境引入,初步感知。
    引言。
    上一節(jié)我們已經(jīng)學(xué)習(xí)了關(guān)于函數(shù)的最基礎(chǔ)的知識,知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開始,我們將重點研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
    問題12011年開始運營的京滬高速鐵路全長1318km.設(shè)列車的平均速度為300km/h.考慮以下問題:
    師生活動:教師引導(dǎo)學(xué)生分析問題中的數(shù)量關(guān)系,這是典型的行程問題,數(shù)量關(guān)系是學(xué)生熟悉的“路程=速度×?xí)r間”.
    設(shè)計意圖:讓學(xué)生真切感受數(shù)學(xué)與實際的聯(lián)系,即數(shù)學(xué)理論來源于實際又服務(wù)于實際.幫助學(xué)生逐步提高將實際問題抽象為函數(shù)模型的能力,初步體會函數(shù)建模思想.
    設(shè)計意圖:由于自變量t是列車運行時間,作為實際問題,自變量的取值是受限制的,應(yīng)對其取值范圍作出說明.
    對問題(2)的分析解答過程讓學(xué)生回答下列問題:
    追問1這個問題中兩個變量之間的對應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說明理由.
    設(shè)計意圖:讓學(xué)生感受量與量之間的函數(shù)關(guān)系,體會函數(shù)關(guān)系蘊涵在實際問題中,激發(fā)學(xué)生探究興趣.對理由的說明學(xué)生可能有障礙,此時教師要引導(dǎo)學(xué)生回顧函數(shù)概念的學(xué)習(xí)過程,用函數(shù)的概念來回答:問題中的兩個變量,當(dāng)其中的變量t變化時,另一個變量y隨著t的變化而變化,并且對于變量t的每一個?定的值,另一個變量y都有唯一確定的值與之對應(yīng).
    追問2請你寫出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?
    追問3對于自變量t和函數(shù)y的每一對對應(yīng)值,y與t的比值,
    初二數(shù)學(xué)教案一次函數(shù)篇十二
    3、能解二元一次方程組的方法求兩條直線的交點坐標(biāo)。
    2、用解二元一次方程組的方法求兩條直線的交點坐標(biāo)。
    1、做圖像時要標(biāo)準(zhǔn)、精確,近似值才接近。
    先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。
    自主學(xué)習(xí)部分:
    問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
    (3)在一次函數(shù)y=5-x的圖像上任取一點,它們的坐標(biāo)適合方程x+y=5嗎?
    (5)由以上的探究過程,你發(fā)現(xiàn)了什么?
    問題2.
    (3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標(biāo)。
    合作探究:
    1、用做圖像的方法解方程組。
    2、用解方程的方法求直線y=4-2x與直線y=2x-12交點。
    初二數(shù)學(xué)教案一次函數(shù)篇十三
    1、學(xué)習(xí)什么是三元一次方程和三元一次方程組.(2)會解簡單的三元一次方程組.
    過程與方法。
    通過三元一次方程組的解法練習(xí),培養(yǎng)學(xué)生分析能力,能根據(jù)題目的特點,確定消元方法、消元對象.培養(yǎng)學(xué)生的計算能力、訓(xùn)練解題技巧.
    情感態(tài)度與價值觀。
    讓學(xué)生通過自己的探索、嘗試、比較等活動去發(fā)現(xiàn)一些規(guī)律,體會一些數(shù)學(xué)思想,從而激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣.
    教學(xué)重點。
    使學(xué)生會解簡單的三元一次方程組,經(jīng)過本課教學(xué)進(jìn)一步熟悉解方程組時“消元”的基本思想和靈活運用代入法、加減法等重要方法.
    教學(xué)難點:
    針對方程組的特點,選擇最好的解法.
    教學(xué)過程。
    一、復(fù)習(xí)。
    二、引入新課。
    甲、乙、丙三數(shù)的和是26,甲數(shù)比乙數(shù)大1,甲數(shù)的兩倍與丙數(shù)的和比乙數(shù)大18,求這三個數(shù).
    初二數(shù)學(xué)教案一次函數(shù)篇十四
    1.知識與能力目標(biāo)。
    (3)通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識和能力。
    2.情感態(tài)度價值觀目標(biāo)。
    通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強新舊知識的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗數(shù)學(xué)活動充滿探索與創(chuàng)造。
    教材分析。
    前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識的綜合運用。強化了部分與整體的內(nèi)在聯(lián)系,知識與知識的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。
    教學(xué)重點。
    教學(xué)難點。
    方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。
    教學(xué)方法。
    學(xué)生操作------自主探索的方法。
    學(xué)生通過自己操作和思考,結(jié)合新舊知識的聯(lián)系,自主探索出方程與圖象之間的對應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程組和“形”----函數(shù)的圖象(直線)之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。
    教學(xué)過程。
    一、故事引入。
    迪卡兒的故事------蜘蛛給予的啟示。
    在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。
    二、嘗試探疑。
    1、y=x+1。
    你們把我叫一次函數(shù),我也是二元一次方程??!這是怎么回事,你知道嗎?
    學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。
    2、函數(shù)y=x+1上的任意一點的坐標(biāo)是否滿足方程x-y=-1?
    學(xué)生會迫不及待地拿起筆來計算。從函數(shù)y=x+1圖象上找?guī)讉€點看它們的坐標(biāo)是否滿足方程x-y=-1。結(jié)果都滿足。然后學(xué)生就會自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點滿足不滿足方程x-y=-1。結(jié)果也都滿足。這樣他們就會搭成共識:函數(shù)y=x+1上的任意一點的坐標(biāo)都滿足方程x-y=-1。
    然后學(xué)生會用同樣的方法得出另一個結(jié)論:以方程x-y=-1的解為坐標(biāo)的點一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x-y=-1到底有何關(guān)系呢?通過交流自動得出結(jié)論:以方程x-y=-1的解為坐標(biāo)的點組成的圖象與一次函數(shù)y=x+1的圖象相同。
    3.在同一坐標(biāo)系下,化出y=x+1與y=4x-2的圖象,他們的交點坐標(biāo)是什么?
    方程組y=x+1的解是什么?二者有何關(guān)系?
    y=4x-2。
    y=x+1的解。
    y=4x-2。
    教師作最后總結(jié):因為函數(shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。
    解方程組x-2y=-2。
    2x-y=2。
    學(xué)生會很快的用消元法解出來。
    老師發(fā)問:誰還有其他的方法?如果有,鼓勵學(xué)生大膽提出。并給予口頭表揚。如果沒有人用其他的`方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學(xué)生就會去探索新的思路、方法。
    一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點坐標(biāo)嗎?學(xué)生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:
    1.把兩個方程都化成函數(shù)表達(dá)式的形式。
    2.畫出兩個函數(shù)的圖象。
    3.畫出交點坐標(biāo),交點坐標(biāo)即為方程組的解。
    問題又出來了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2.1y=2.1。
    y=1.9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。
    老師提問:你能說一下用圖象法解方程組的不足嗎?
    學(xué)生爭先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問:既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!
    教師解釋一下:在現(xiàn)實生活和生產(chǎn)中,我們會遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點坐標(biāo)。教師可以用z+z智能教育平臺演示一下。
    用作圖象的方法解方程組,這體現(xiàn)了兩個知識點的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識,探索知識點之間的聯(lián)系,可起到化新為舊的作用,達(dá)到事半功倍的效果。逐步讓學(xué)生學(xué)會這種學(xué)習(xí)新知識的技巧。
    四、引申。
    方程組x+y=2。
    x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?
    學(xué)生用消元法開始解方程組,結(jié)果無解,怎么回事呢?學(xué)生會嘗試運用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。
    因為有了上面的用作圖象法解方程組,在這里,學(xué)生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結(jié)合的意識和能力。
    五、課后小結(jié)。
    本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程與“形”------函數(shù)圖象之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力。
    六、作業(yè)。
    1.用作圖象法解方程組2x+y=4。
    2x-3y=12。
    2.如圖,直線l、l相交于點a,試求出a點坐標(biāo)。
    教學(xué)反思。
    這節(jié)課由故事引入,激發(fā)了學(xué)生極大的學(xué)習(xí)興趣。然后提出了三個尖銳的問題,讓學(xué)生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應(yīng)用和引申過程中,盡量讓學(xué)生自主的發(fā)現(xiàn)問題,自主的解決問題。學(xué)生在緊張、愉快中完成了這節(jié)課的學(xué)習(xí)。
    初二數(shù)學(xué)教案一次函數(shù)篇十五
    一、學(xué)生起點分析:
    學(xué)生已了解方程的基本概念和性質(zhì),并能熟練解二元一次方程,也能整體系統(tǒng)地審清題意,能從具體問題的數(shù)量關(guān)系中找出等量關(guān)系并列出二元一次方程組;學(xué)生也基本能夠運用方程的思想解決實際問題。初中二年級的學(xué)生,正處于少年期,已具備了初步的抽象、概括和分析問題解決問題能力,要培養(yǎng)他們敢于面對挑戰(zhàn)和勇于克服困難的意志.鼓勵他們大膽嘗試,敢于發(fā)表自己的看法,以從中獲得成功的體驗,激發(fā)學(xué)習(xí)激情.
    二、教學(xué)任務(wù)分析:
    基于以上對學(xué)生情況的分析,特制定以下教學(xué)任務(wù):
    1、在具體問題的解決過程中提高學(xué)生的解二元一次方程組的技能;。
    3、進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.
    4、通過\'雞兔同籠\',把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的\'趣\';進(jìn)一步強調(diào)課堂與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神;通過對祖國文明史的了解,培養(yǎng)學(xué)生愛國主義精神,樹立為中華崛起而學(xué)習(xí)的信心.
    教學(xué)重點。
    教學(xué)難點。
    1、讀懂古算題;。
    2、根據(jù)題意找出等量關(guān)系,列出方程.
    三、教學(xué)過程設(shè)計。
    本節(jié)課設(shè)計了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):引入課題;第二環(huán)節(jié):典型例題;第三環(huán)節(jié):闖關(guān)練習(xí);第四環(huán)節(jié):反饋練習(xí);第五環(huán)節(jié):感悟和收獲;第六環(huán)節(jié):作業(yè)布置.
    第一環(huán)節(jié):引入課題。
    活動內(nèi)容1:例1今有雉(兔)同籠,上有三十五頭,下有九十四足,問雉兔各幾何?
    提問:
    (1)\'上有三十五頭\'的意思是什么?\'下有九十四足\'呢?
    (2)你能解決這個有趣的問題嗎?
    寫出解題過程,讓學(xué)生討論對不對,有沒有不同的思路和觀點;最后在學(xué)生充分討論的基礎(chǔ)上,老師用多媒體課件,給出正確的答案.)。
    初二數(shù)學(xué)教案一次函數(shù)篇十六
    3、學(xué)會開放性地尋求設(shè)計方案,培養(yǎng)分析。
    教學(xué)難點用方程組刻畫和解決實際問題的過程。
    知識重點經(jīng)歷和體驗用方程組解決實際問題的過程。
    教學(xué)過程(師生活動)設(shè)計理念。
    (出示問題)據(jù)以往的統(tǒng)計資料,甲、乙兩種作物的單位面積產(chǎn)量的比是1:1:5,現(xiàn)要在一塊長200m,寬100m的長方形土地上種植這兩種作物,怎樣把這塊地分為兩個長方形,使甲、乙兩種作物的總產(chǎn)量的比是3:4(結(jié)果取整數(shù))?以學(xué)生身邊的實際問題展開學(xué)習(xí),突出數(shù)學(xué)與現(xiàn)實的聯(lián)系,培養(yǎng)學(xué)生用數(shù)學(xué)的意識。
    探索分析。
    研究策略以上問題有哪些解法?
    學(xué)生自主探索,合作交流,整理思路:
    (2)先求兩個小長方形的面積比,再計算分割線的位置.。
    (3)設(shè)未知數(shù),列方程組求解.。
    ……。
    學(xué)生經(jīng)討論后發(fā)現(xiàn)列方程組求解較為方便.多角度分析問題,多策略解決問題,提高思維的發(fā)散性。
    合作交流。
    解決問題引導(dǎo)學(xué)生回顧列方程解決實際問題的基本思路。
    (1)設(shè)未知數(shù)。
    (2)找相等關(guān)系。
    (3)列方程組。
    (4)檢驗并作答。
    解這個方程組得。
    過長方形土地的長邊上離一端約106m處,把這塊地分。
    為兩個長方形.較大一塊地種甲作物,較小一塊地種乙作物.。
    你還能設(shè)計別的種植方案嗎?
    用類似的方法,可沿平行于線段ab的方向分割長。
    方形.。
    教師巡視、指導(dǎo),師生共同講評.。
    比較分析,加深對方程組的認(rèn)識。
    畫圖,數(shù)形結(jié)合,輔助學(xué)生分析。
    進(jìn)一步滲透模型化的思想。
    引發(fā)學(xué)生思考,尋求解決途徑。
    拓展探究。
    按以下步驟展開問題的討論:
    (l)學(xué)生獨立思考,構(gòu)建數(shù)學(xué)模型.。
    (2)小組討論達(dá)成共識.。
    (3)學(xué)生板書講解.。
    (4)對方程組的解進(jìn)行探究和討論,從而得到實際問題的結(jié)果.。
    (5)針對以上結(jié)論,你能再提出幾個探索性問題嗎?以學(xué)生學(xué)習(xí)生活中遇到的。
    問題展開討論,鞏固用二元一次。
    小結(jié)與作業(yè)。
    小結(jié)提高提問:通過本節(jié)課的討論,你對用方程解決實際的方法又有何新的`認(rèn)識?
    學(xué)生思考后回答、整理.。
    布置作業(yè)12、必做題:教科書116頁習(xí)題8.3第1(2)、4題。
    13、選做題:教科書117頁習(xí)題8.3第7題。
    14、備15、選題:
    (3)解方程組。
    小彬看見了,說:“我來試一試.”結(jié)果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個洞,恰好是邊長2mm的小正方形!
    你能幫他們解開其中的奧秘嗎?
    提示學(xué)生先動手實踐,再分析討論.。
    分層次布1作業(yè).其中“必。
    做題”面向全體學(xué)生,鞏固知識、
    方法,加深理解廠選做題”面向。
    部分學(xué)有余力的學(xué)生,給他們一。
    定的時間和空間,相互合作,自主探究,增強實踐能力.備選通供教師參考.。
    本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)。
    本課所提供的例題、練習(xí)題、作業(yè)題突出體現(xiàn)以下特點:
    2、探索性.問題解決的策略不易獲得,問題中的數(shù)量關(guān)系不易發(fā)現(xiàn),問題中的未知數(shù)不。
    易設(shè)定,這為學(xué)生開展探究活動提供了機(jī)會.。
    初二數(shù)學(xué)教案一次函數(shù)篇十七
    11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時間的關(guān)系,小華八點離開家,十四點回到家,根據(jù)這個曲線圖,請回答下列問題:
    (1)到達(dá)離家最遠(yuǎn)的地方是幾點?離家多遠(yuǎn)?
    (2)何時開始第一次休息?休息多長時間?
    (3)小華在往返全程中,在什么時間范圍內(nèi)平均速度最快?最快速度是多少?
    (4)小華何時離家21千米?(寫出計算過程)。
    初二數(shù)學(xué)教案一次函數(shù)篇十八
    過程與方法。
    了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中“化未知為已知”的化歸思想,從而“變陌生為熟悉”
    情感態(tài)度與價值觀。
    利用小組合作探討學(xué)習(xí),使學(xué)生領(lǐng)會樸素的辯證唯物主義思想。
    教學(xué)重點。
    教學(xué)難點。
    初二數(shù)學(xué)教案一次函數(shù)篇十九
    知識技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會用圖象法解二元一次方程組。
    情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。
    教學(xué)重難點。
    難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
    教學(xué)過程。
    (一)引入新課。
    學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。
    (二)進(jìn)行新課。
    (3)是否直線上任意一點的坐標(biāo)都是它所對應(yīng)的二元一次方程的解?
    此時教師留給學(xué)生充分探索交流的時間與空間,對學(xué)生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當(dāng)于確定兩條直線交點的坐標(biāo)。
    進(jìn)一步歸納出:從數(shù)的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。
    3、列一元二次不等式。
    解法1:設(shè)上網(wǎng)時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標(biāo),結(jié)合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當(dāng)一個月內(nèi)上網(wǎng)時間少于400分時,選擇方式a省錢;當(dāng)上網(wǎng)時間等于400分時,選擇方式a、b沒有區(qū)別;當(dāng)上網(wǎng)時間多于400分時,選擇方式b省錢。
    解法2:設(shè)上網(wǎng)時間為分,方式b與方式a兩種計費的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計算出直線與軸的交點坐標(biāo),類似地用點位置的高低直觀地找到答案。
    注意:所畫的函數(shù)圖象都是射線。
    4、習(xí)題。
    (1)、以方程的解為坐標(biāo)的所有點都在一次函數(shù)_____的圖象上。
    (2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個交點,且交點坐標(biāo)是________。
    5、旅游問題。
    古城荊州歷史悠久,文化燦爛。