初二勾股定理教案(優(yōu)質18篇)

字號:

    一份好的教案可以使教學過程更加有序,學生學習更加有效。制定教案時要結合學生的實際情況和學習需求進行個性化設置。教案范文中融入了現(xiàn)代化教學技術和教學手段,對于提高教學效果具有積極的推動作用。
    初二勾股定理教案篇一
    1、通過拼圖,用面積的方法說明勾股定理的正確性.
    2、通過實例應用勾股定理,培養(yǎng)學生的知識應用技能.
    一、學前準備:
    1、閱讀課本第46頁到第47頁,完成下列問題:。
    2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)。
    二、合作探究:
    (一)自學、相信自己:
    (二)思索、交流:
    (三)應用、探究:
    (四)鞏固練習:
    1、如圖,64、400分別為所在正方形的面積,則圖中字。
    母a所代表的正方形面積是_________。
    三.學習體會:
    本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應用此定理解決問題時,應注意只有直角三角形的三邊才有這樣的關系,如果不是直角三角形應該構造直角三角形來解決。
    2②圖。
    四.自我測試:
    五.自我提高:
    初二勾股定理教案篇二
    理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
    【過程與方法】。
    經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
    【情感、態(tài)度與價值觀】。
    體會事物之間的聯(lián)系,感受幾何的魅力。
    【重點】勾股定理的逆定理及其證明。
    【難點】勾股定理的逆定理的證明。
    (一)導入新課。
    復習勾股定理,分清其題設和結論。
    提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
    出示古埃及人利用等長的3、4、5個繩結間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
    (二)講解新知。
    請學生思考3,4,5之間的關系,結合勾股定理的學習經(jīng)驗明確。
    出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
    學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
    初二勾股定理教案篇三
    學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念。
    2、過程與方法。
    (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。
    (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想。
    3、情感態(tài)度與價值觀。
    (1)通過有趣的問題提高學習數(shù)學的興趣。
    (2)在解決實際問題的過程中,體驗數(shù)學學習的實用性。
    教學重點:
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
    教學難點:
    利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。
    教學準備:
    多媒體。
    教學過程:
    第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)。
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)。
    學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構圖,計算。
    第三環(huán)節(jié):做一做(7分鐘,學生合作探究)。
    教材23頁。
    李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務嗎?
    第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)。
    2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(3分鐘,師生問答)。
    內容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)。
    作業(yè):1.課本習題1.5第1,2,3題.。
    要求:a組(學優(yōu)生):1、2、3。
    b組(中等生):1、2。
    c組(后三分之一生):1。
    初二勾股定理教案篇四
    在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結合、從特殊到一般等數(shù)學思想。
    通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
    1、創(chuàng)設情境。
    師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
    設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設置懸念,引入課題。
    觀看洋蔥數(shù)學中關于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界。
    追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?
    師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
    設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論。
    問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關系也同樣成立。
    師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。
    初二勾股定理教案篇五
    教學目標1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
    2.會綜合運用平行四邊形的判定方法和性質來解決問題。
    教學重點:平行四邊形的判定方法及應用。
    教學難點:平行四邊形的判定定理與性質定理的靈活應用。
    引
    二.探。
    閱讀教材p44至p45。
    利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考并探討:
    (1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
    (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
    (3)你能說出你的做法及其道理嗎?
    (4)能否將你的探索結論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
    (5)你還能找出其他方法嗎?
    從探究中得到:
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
    證一證。
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    證明:(畫出圖形)。
    平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
    證明:(畫出圖形)。
    三.結。
    兩組對邊分別相等的四邊形是平行四邊形。
    對角線互相平分的四邊形是平行四邊形。
    四.用。
    初二勾股定理教案篇六
    教材分析:勾股定理是直角三角形的重要性質,它把三角形有一個直角的"形"的特點,轉化為三邊之間的"數(shù)"的關系,它是數(shù)形結合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質,是初中數(shù)學教學內容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
    學生分析:
    1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節(jié)課的本質。
    2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發(fā)學生的學習興趣。
    設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向學生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
    教學目標:
    1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結合思想。
    2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
    3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
    4、欣賞設計圖形美。
    教學準備階段:
    學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
    老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
    (一)引入。
    同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)。
    (二)實驗探究。
    設網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
    (討論難點:以斜邊為邊的正方形的面積找法)。
    交流后得出一般結論:(用關于a、b、c的式子表示)。
    (三)探索所得結論的正確性。
    當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
    1、指導學生運用拼圖、或正方形網(wǎng)格紙構造或設計合理分割(或補全)圖形,去探索本結論的正確性:(以四人小組為單位進行)。
    在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
    如圖2(用補的方法說明)。
    師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
    如圖3(用割的方法去探索)。
    師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構造此圖驗證了這一結論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結論命名為"勾股定理"。(點題)。
    20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)。
    如圖4(構造新圖形的方法去探索)。
    1、繼續(xù)收集、整理有關勾股定理的證明方的探索問題并交流。
    初二勾股定理教案篇七
    一、整個課堂設計完整、結構緊湊、邏輯嚴密、前后呼應,準備得比較充分,能引導學生循序漸進,思路很清晰,講解也很到位。
    二、不搞題海戰(zhàn)術,精講精練,舉一反三、觸類旁通。題型設計選題有針對性、典型性、層次性,亦有梯度,兩位老師都設計了分層練習,作業(yè)分層設計精巧,適合滿足不同層次學生的要求。
    三、兩位老師引入新課都很自然,兩位老師都能從學生的實際水平出發(fā),面向全體學生,因材施教,分層次開展教學工作,全面提高學習效率。
    教師在整個教學過程中老師敢于讓學生探索、體驗,給了學生以最大的自由運用和探索規(guī)律的開闊的地帶。特別是新塘三中的曾老師在教學中,通過教師有序的導、學生積極的學習參與、體驗、討論與交流,培養(yǎng)學生具有主動、負責、開拓、創(chuàng)新的個性特征和科學的思維方式。將知識與技能,過程與方法,情感態(tài)度和價值觀完美結合。在整個教學活動中始終面對全體學生,讓每一個學生都有收獲,都得到成功的體驗,充分體現(xiàn)了全面育人的新課標精神。建議新塘二中老師盡量少講,讓學生多思,多想,多做。......
    初二勾股定理教案篇八
    勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
    本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。
    一、知識與技能。
    1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。
    2、應用勾股定理解決簡單的實際問題。
    3學會簡單的合情推理與數(shù)學說理。
    二、過程與方法。
    引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。
    三、情感與態(tài)度目標。
    通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
    四、重點與難點。
    一、創(chuàng)設情景,揭示課題。
    1、教師展示圖片并介紹第一情景。
    以中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
    周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”
    2、教師展示圖片并介紹第二情景。
    畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
    二、師生協(xié)作,探究問題。
    1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
    2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
    3、你能得到什么結論嗎?
    三、得出命題。
    勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
    第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。
    第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的。
    角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。
    因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。
    這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
    五、應用舉例,拓展訓練,鞏固反饋。
    勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
    六、歸納總結。
    2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
    七、討論交流。
    讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
    我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
    初二勾股定理教案篇九
    即直角三角形兩直角的平方和等于斜邊的平方.。
    因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:
    (2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
    如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.。
    請讀者證明.。
    請同學們自己證明圖(2)、(3).。
    3.在數(shù)軸上表示無理數(shù)。
    二、典例精析。
    132-52=144,所以另一條直角邊的長為12.。
    所以這個直角三角形的面積是×12×5=30(cm2).。
    例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點a爬到。
    頂點b,則它走過的最短路程為。
    a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的。
    各棱長相等,因此只有一種展開圖.。
    解:將正方體側面展開。
    初二勾股定理教案篇十
    學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念。
    2、過程與方法。
    (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。
    (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想。
    3、情感態(tài)度與價值觀。
    (1)通過有趣的問題提高學習數(shù)學的興趣。
    (2)在解決實際問題的過程中,體驗數(shù)學學習的實用性。
    教學重點:
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
    教學難點:
    利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。
    教學準備:
    多媒體。
    教學過程:
    第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)。
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)。
    學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構圖,計算。
    第三環(huán)節(jié):做一做(7分鐘,學生合作探究)。
    教材23頁。
    李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務嗎?
    第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)。
    2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(3分鐘,師生問答)。
    內容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)。
    作業(yè):1.課本習題1.5第1,2,3題.。
    要求:a組(學優(yōu)生):1、2、3。
    b組(中等生):1、2。
    c組(后三分之一生):1。
    初二勾股定理教案篇十一
    本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學生在學習七年級上第一章時對生活中的立體圖形已經(jīng)有了一定的認識,并從事過相應的實踐活動,因而學生已經(jīng)具備解決本課問題所需的知識基礎和活動經(jīng)驗基礎.
    二、教學任務分析。
    本節(jié)是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內容是運用勾股定理及其逆定理解決簡單的實際問題.當然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力.
    本節(jié)課的教學目標是:
    1.通過觀察圖形,探索圖形間的關系,發(fā)展學生的空間觀念.
    2.在將實際問題抽象成數(shù)學問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.
    3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學學習的實用性.
    利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.
    四、教法學法。
    1.教學方法。
    引導—探究—歸納。
    本節(jié)課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學目標,我力求以下三個方面對學生進行引導:
    (1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;。
    (2)從學生活動出發(fā),順勢教學過程;。
    (3)利用探索研究手段,通過思維深入,領悟教學過程.
    2.課前準備。
    教具:教材、電腦、多媒體課件.
    學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具.
    五、教學過程分析。
    本節(jié)課設計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè).
    初二勾股定理教案篇十二
    教學目標:
    1、知識目標:
    (2)學會利用勾股定理進行計算、證明與作圖;
    (3)了解有關勾股定理的歷史。
    2、能力目標:
    (1)在定理的證明中培養(yǎng)學生的拼圖能力;
    (2)通過問題的解決,提高學生的運算能力。
    3、情感目標:
    (1)通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;
    (2)通過有關勾股定理的歷史講解,對學生進行德育教育。
    教學難點:通過有關勾股定理的歷史講解,對學生進行德育教育。
    教學用具:直尺,微機。
    教學方法:以學生為主體的討論探索法。
    教學過程:
    1、新課背景知識復習。
    (1)三角形的三邊關系。
    (2)問題:(投影顯示)。
    直角三角形的三邊關系,除了滿足一般關系外,還有另外的特殊關系嗎?
    2、定理的獲得。
    讓學生用文字語言將上述問題表述出來。
    勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
    強調說明:
    (1)勾――最短的邊、股――較長的直角邊、弦――斜邊。
    (2)學生根據(jù)上述學習,提出自己的問題(待定)。
    3、定理的證明方法。
    方法一:將四個全等的直角三角形拼成如圖1所示的正方形。
    方法二:將四個全等的直角三角形拼成如圖2所示的正方形。
    方法三:“總統(tǒng)”法、如圖所示將兩個直角三角形拼成直角梯形。
    以上證明方法都由學生先分組討論獲得,教師只做指導、最后總結說明。
    4、定理與逆定理的應用。
    5、課堂小結:
    已知直角三角形的兩邊求第三邊。
    已知直角三角形的一邊,求另兩邊的關系。
    6、布置作業(yè):
    a、書面作業(yè)p130#1、2、3。
    b、上交作業(yè)p132#1、3。
    初二勾股定理教案篇十三
    1.勾股定理內容:如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
    勾股定理的'證明方法很多,常見的是拼圖的方法。
    (1)圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變;
    (2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導出勾股定理。
    勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。
    初二勾股定理教案篇十四
    本節(jié)課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養(yǎng)學生思維能力的目的.具體說明如下:
    (1)讓學生主動提出問題。
    (2)讓學生自己解決問題。
    (3)通過實際問題的解決,培養(yǎng)學生的數(shù)學意識.。
    初二勾股定理教案篇十五
    教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
    學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
    初二勾股定理教案篇十六
    教學目標:
    1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
    教學重點:
    引導學生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學難點:
    課前準備:
    多媒體ppt,相關圖片。
    教學過程:
    (一)情境導入。
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
    已知一直角三角形的兩邊,如何求第三邊?
    學習了今天的這節(jié)課后,同學們就會有辦法解決了。
    (二)學習新課。
    初二勾股定理教案篇十七
    1.逆定理的內容:如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
    (2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b.
    2.利用勾股定理的逆定理判斷一個三角形是否為直角三角形的一般步驟:
    (1)確定最大邊;
    (2)算出最大邊的平方與另兩邊的平方和;
    (3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
    初二勾股定理教案篇十八
    教學目標:
    1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
    教學重點:
    引導學生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學難點:
    課前準備:
    多媒體ppt,相關圖片。
    教學過程:
    (一)情境導入。
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。