3的倍數(shù)的特征教學(xué)反思100字(10篇)

字號(hào):

    范文為教學(xué)中作為模范的文章,也常常用來(lái)指寫(xiě)作的模板。常常用于文秘寫(xiě)作的參考,也可以作為演講材料編寫(xiě)前的參考。那么我們?cè)撊绾螌?xiě)一篇較為完美的范文呢?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。
    3的倍數(shù)的特征教學(xué)反思100字篇一
    :讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”。
    :先讓學(xué)生在百數(shù)圖中找找看,顯然像13、16、19等等的數(shù)不是3的倍數(shù),學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。
    在此基礎(chǔ)上,讓學(xué)生在百數(shù)圖中找出3的倍數(shù)的數(shù),如果把這些3的倍數(shù)的個(gè)位數(shù)字和十位數(shù)字進(jìn)行調(diào)換,它還是3的倍數(shù)嗎?(讓學(xué)生動(dòng)手驗(yàn)證)
    12→2115→5118→8124→4227→72
    我們發(fā)現(xiàn)調(diào)換位置后還是3的倍數(shù),那3的倍數(shù)有什么奧妙呢?
    如果把3的倍數(shù)的各位上的數(shù)相加,它們的和是3的倍數(shù)。
    :下面各數(shù),哪些數(shù)是3的倍數(shù)呢?
    2105421612992319876
    小結(jié):從上面可知,一個(gè)數(shù)各位上的數(shù)字之和如果是3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。這樣結(jié)論的得出水到渠成。
    3的倍數(shù)的特征教學(xué)反思100字篇二
    3的倍數(shù)的特征的教學(xué)與2、5倍數(shù)的特征難度上有不同,因?yàn)?、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出(根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來(lái)),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點(diǎn)預(yù)習(xí)題。
    1、給出一些數(shù)讓學(xué)生先判斷哪些數(shù)是3的倍數(shù)。并讓學(xué)生說(shuō)一說(shuō)你是怎么判斷的?
    2、從以上的3的倍數(shù)進(jìn)行思考:
    (1)、3的倍數(shù)與它個(gè)位上的數(shù)有關(guān)系嗎?
    (2)、 3的倍數(shù)的各位上的數(shù)的.和都是3的倍數(shù)嗎?
    新課時(shí)讓學(xué)生從上面的練習(xí)中去發(fā)現(xiàn)了什么,從而歸納3的倍數(shù)的特征:一個(gè)數(shù)的各個(gè)數(shù)位上的數(shù)字和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)
    然后再讓每個(gè)同學(xué)任意寫(xiě)一個(gè)3的倍數(shù),再看看這個(gè)數(shù)的各個(gè)數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學(xué)生說(shuō)出方法和思路。
    經(jīng)過(guò)以上這些活動(dòng)后學(xué)生都能對(duì)一個(gè)數(shù)是不是3的倍數(shù)進(jìn)行簡(jiǎn)單的判斷。特別是學(xué)生對(duì)3的倍數(shù)特征的判斷大多數(shù)的學(xué)生能先求出各個(gè)數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進(jìn)行判斷,效果很好。
    3的倍數(shù)的特征教學(xué)反思100字篇三
    課始,讓學(xué)生任意報(bào)數(shù),師生比賽誰(shuí)先判斷出這個(gè)數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個(gè)“不識(shí)時(shí)務(wù)者”打亂了課前的預(yù)想?!袄蠋煟抑榔渲械拿孛?,只要把各個(gè)數(shù)位上的數(shù)加起來(lái),看看是不是3的倍數(shù)就行了!”“對(duì)!在數(shù)學(xué)書(shū)上就有這句話(huà)?!薄钟袔讉€(gè)學(xué)生偷偷地打開(kāi)了數(shù)學(xué)書(shū)?!霸趺崔k?”謎底都被學(xué)生揭開(kāi)了。面對(duì)這一生成,我沒(méi)有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書(shū)在黑板上,讓學(xué)生理解這句話(huà)的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來(lái),驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……
    課堂上經(jīng)常會(huì)出現(xiàn)類(lèi)似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識(shí)和盤(pán)托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識(shí)的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過(guò)程真能取代“探究發(fā)現(xiàn)”的過(guò)程嗎??jī)H僅舉幾個(gè)例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒(méi)有尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn),而且在已經(jīng)揭開(kāi)“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動(dòng),也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?
    (與第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個(gè)數(shù)是不是3的倍數(shù),這時(shí)一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來(lái)。)
    師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了2、5的倍數(shù)的特征只和什么有關(guān)?
    生:只和一個(gè)數(shù)的個(gè)位有關(guān)。
    師:與今天學(xué)習(xí)的知識(shí)比較一下,你有什么疑問(wèn)嗎?
    生1:為什么判斷一個(gè)數(shù)是不是3的倍數(shù)只看個(gè)位不行?
    生2:為什么判斷一個(gè)數(shù)是不是2、5的倍數(shù)只看個(gè)位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?
    ……
    師:同學(xué)們思考問(wèn)題確實(shí)比較深入,提出了非常有研究?jī)r(jià)值的問(wèn)題。那我們先來(lái)研究一下2、5的倍數(shù)為什么只和它的個(gè)位有關(guān)。
    (學(xué)生嘗試探索,教師適時(shí)引導(dǎo)學(xué)生從簡(jiǎn)單數(shù)開(kāi)始研究,借助小棒或其他方法進(jìn)行解釋。)
    生1:我在擺小棒時(shí)發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個(gè)位擺幾就可以了。
    生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個(gè)數(shù)都可以拆成一個(gè)整十?dāng)?shù)加個(gè)位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個(gè)數(shù)的個(gè)位是幾就決定了它是否是2、5的倍數(shù)。
    師:同學(xué)們想到用“拆數(shù)”的方法來(lái)研究,是個(gè)好辦法。
    生3:是否是3的倍數(shù)只看個(gè)位就不行了。比如13,雖然個(gè)位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個(gè)位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個(gè)位上的數(shù)合起來(lái)是不是3的倍數(shù)就行了。
    生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。
    生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時(shí)就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。
    生(部分):對(duì)。
    生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?
    生6:也就是說(shuō)整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個(gè)3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個(gè)位上的和是不是3的倍數(shù)就可以了。
    師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?
    學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過(guò)千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來(lái)越清晰。
    師:同學(xué)們通過(guò)自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征?,F(xiàn)在你還有哪些新的探索想法呢?
    生1:我想知道4的倍數(shù)有什么特征?
    生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎?、整千?shù)一定都是4的倍數(shù)。
    師:你能把學(xué)到的方法及時(shí)應(yīng)用,非常棒!
    生3:7或9的倍數(shù)有什么特征呢?
    ……
    師:同學(xué)們又提出了一些新的、非常有價(jià)值的問(wèn)題,課后可以繼續(xù)進(jìn)行探索。
    1. 找準(zhǔn)知識(shí)間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。而實(shí)際上,3的倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來(lái)研究。于是新舊知識(shí)之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的數(shù)加起來(lái)研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺(jué)地進(jìn)入到自主探究的狀態(tài)之中。知識(shí)不是孤立的,新舊知識(shí)有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識(shí)間的沖突并巧妙激發(fā)出來(lái),就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對(duì)新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
    2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開(kāi)始。對(duì)比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對(duì)于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識(shí)的對(duì)比,將困惑激發(fā)出來(lái),通過(guò)學(xué)生間相互啟發(fā)、相互質(zhì)疑,對(duì)問(wèn)題的`思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過(guò)程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會(huì)產(chǎn)生困惑,這種困惑有時(shí)是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對(duì)這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ?,促使探究活?dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對(duì)這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。
    3. 溝通知識(shí)間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過(guò)“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時(shí)溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過(guò)程中建構(gòu)起對(duì)數(shù)的倍數(shù)特征的整體認(rèn)識(shí),感悟數(shù)學(xué)其實(shí)就是以一馭萬(wàn),以簡(jiǎn)馭繁。課堂不是句號(hào),學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對(duì)于一堂課知識(shí)的掌握,而應(yīng)著眼于學(xué)生對(duì)于解決問(wèn)題方法的感悟,獲得可持續(xù)發(fā)展的動(dòng)力。
    3的倍數(shù)的特征教學(xué)反思100字篇四
    《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2和5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出3的倍數(shù)特征。
    但上課的過(guò)程中,學(xué)生并沒(méi)有按照我想的思路去進(jìn)行,一個(gè)學(xué)生在我沒(méi)有預(yù)想的前提下說(shuō)出了3的'倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒(méi)有進(jìn)行。只是讓學(xué)生兩人去再說(shuō)一說(shuō)剛才那個(gè)學(xué)生的發(fā)現(xiàn),加以理解,鞏固。
    這節(jié)課結(jié)束后,我感覺(jué)以下方面做得不好。
    1、備課不充分。自己在備課時(shí)沒(méi)有好好的去備學(xué)生,沒(méi)有做好多方面的預(yù)設(shè);
    2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時(shí),都應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說(shuō)出的盡量讓學(xué)生說(shuō),多放手,相信學(xué)生。
    3的倍數(shù)的特征教學(xué)反思100字篇五
    在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對(duì)本節(jié)課的教學(xué)情況進(jìn)行反思。
    雖然2、5、3的倍數(shù)的特征看起來(lái)很簡(jiǎn)單,探究的過(guò)程可能沒(méi)有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識(shí)銜接問(wèn)題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過(guò),因此,我在課開(kāi)始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來(lái),這些概念比較抽象,學(xué)生一時(shí)難以掌握。
    備課時(shí)也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來(lái)學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的.時(shí)間和機(jī)會(huì)就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來(lái)可能會(huì)有一定的難度,最好單獨(dú)作為一課時(shí)學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測(cè)試拖堂了。
    高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會(huì)學(xué),學(xué)會(huì),在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過(guò)展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書(shū)的相互干擾,于是,我臨時(shí)安排按先后順序進(jìn)行,沒(méi)體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。
    3的倍數(shù)的特征教學(xué)反思100字篇六
    心理學(xué)原理表明,新異的刺激可以引起學(xué)生的注意和興趣。在教學(xué)中,根據(jù)不同的教材和要求,采取不同的教學(xué)方法,能夠引起學(xué)生學(xué)習(xí)的興趣,有利于創(chuàng)設(shè)良好的課堂氣氛。
    教學(xué)3的倍數(shù)特征這一課時(shí),教師組織學(xué)生進(jìn)行下列鞏固練習(xí):
    下列數(shù)中3的倍數(shù)有:()
    1435451003328767488
    學(xué)生利用3的倍數(shù)的特征一下子就回答了上面的問(wèn)題,得到了老師的肯定。這時(shí)我接著說(shuō):“我們來(lái)一場(chǎng)老師、學(xué)生打擂臺(tái)怎么樣?看誰(shuí)說(shuō)的3的倍數(shù)的數(shù)最多,我們看誰(shuí)能考倒老師?!边@時(shí)同學(xué)們興趣盎然,紛紛出題來(lái)考老師。
    生:42
    師:111
    生:78
    師:57
    生:81
    師:20xx
    生:6891
    …………
    這時(shí)師故意出錯(cuò):369041
    學(xué)生馬上發(fā)現(xiàn)了這個(gè)數(shù)不是3的倍數(shù),師問(wèn):“你能不能改一改其中的某個(gè)數(shù)字使它成為3的倍數(shù)。”
    生:“可以將1改為2。”
    生:“可以將4改為5。”
    生:“可以將1改為5。”
    生:“可以將1改為8。”
    生:“可以將4改為2”
    生:“可以將4改為8”
    學(xué)生回答完后,我及時(shí)提問(wèn):“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學(xué)生通過(guò)思考回答:“因?yàn)?、6、3、9每一個(gè)數(shù)都是3的倍數(shù),所以只要改4和1這兩個(gè)數(shù)就行了?!边@時(shí)我及時(shí)指出:“判斷一個(gè)數(shù)是不是3的倍數(shù)可以用篩選法來(lái)判斷,在各數(shù)位的`數(shù)字中先篩去3的倍數(shù)或和為3的倍數(shù)的數(shù)字,若余下的數(shù)字之和是3的倍數(shù),原數(shù)就是3的倍數(shù),否則就不是?!边@時(shí)我逐漸地出示下列這組數(shù)要求學(xué)生馬上判斷是否3的倍數(shù)。
    56
    561
    5617
    56178
    561784
    5617849
    …………
    這個(gè)鞏固練習(xí),有效地調(diào)動(dòng)了學(xué)生的積極性,不斷激起學(xué)生認(rèn)知的內(nèi)驅(qū)力,使學(xué)生在探索的過(guò)程中,主動(dòng)學(xué)習(xí)、主動(dòng)探索,帶來(lái)了內(nèi)心的滿(mǎn)足感。
    3的倍數(shù)的特征教學(xué)反思100字篇七
    《3的倍數(shù)的特征》是五年級(jí)下冊(cè)數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個(gè)知識(shí)點(diǎn),是在學(xué)生已經(jīng)認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來(lái)。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。
    因而在《3的倍數(shù)的特征》的開(kāi)始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問(wèn)題中,得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說(shuō)3的.倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒(méi)有關(guān)系,因此要從另外的角度來(lái)觀察和思考。在問(wèn)題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問(wèn),激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問(wèn)題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來(lái),經(jīng)過(guò)進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個(gè)數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
    為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫(xiě)一個(gè)數(shù),利用這一結(jié)論來(lái)驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過(guò)這樣的方式也使學(xué)生認(rèn)識(shí)到:找出某個(gè)規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。
    為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時(shí),我還把一些數(shù)各個(gè)數(shù)位上的數(shù)經(jīng)過(guò)不同的排列,再讓學(xué)生判斷,以加深對(duì)“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時(shí),學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。
    利用2、5、3的倍數(shù)的特征來(lái)判斷一個(gè)數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。
    這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過(guò)自主選擇研究?jī)?nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動(dòng),獲得了數(shù)學(xué)知識(shí)。學(xué)生的學(xué)習(xí)能動(dòng)性和潛在能力得到了激發(fā)。在自主探索的過(guò)程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時(shí)也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。
    3的倍數(shù)的特征教學(xué)反思100字篇八
    從以上的教學(xué)過(guò)程中,可以看到掌握2、5的倍數(shù)的特征不是本節(jié)課的唯一目標(biāo),在制定目標(biāo)的時(shí)候,還從數(shù)學(xué)研究方法這個(gè)方面著手,在學(xué)生掌握知識(shí)的同時(shí),更注重讓學(xué)生了解科學(xué)的數(shù)學(xué)研究的過(guò)程。
    我們知道,一堂課的知識(shí)目標(biāo)是很容易達(dá)成的,但是如果要滲透數(shù)學(xué)思想方法或科學(xué)的研究方法,往往會(huì)給我們一線(xiàn)教師帶來(lái)很多困難。在這節(jié)課中,教師引導(dǎo)學(xué)生通過(guò)猜想驗(yàn)證結(jié)論三個(gè)流程進(jìn)行研究,最后得到正確的數(shù)學(xué)結(jié)果,并進(jìn)行應(yīng)用。
    當(dāng)我們說(shuō)要研究2、5的倍數(shù)的特征時(shí),學(xué)生想當(dāng)然地會(huì)認(rèn)為只要一個(gè)數(shù)一個(gè)數(shù)地研究就可以了。如果讓他們實(shí)際操作,他們很可能會(huì)寫(xiě)了幾個(gè)數(shù)后,就下結(jié)論,當(dāng)然這時(shí)候他們下的結(jié)論也很可能是正確的。大部分老師在這樣的情況下,就會(huì)肯定學(xué)生的結(jié)論,然后進(jìn)行練習(xí)鞏固。
    但是教師并沒(méi)有滿(mǎn)足于此,而是抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度。僅僅幾個(gè)數(shù)就能得出結(jié)論了嗎?答案顯然是否定的,一項(xiàng)結(jié)論的得出不是這樣草率的。如果教師如此這般教學(xué),一次兩次不要緊,長(zhǎng)久以來(lái),學(xué)生也會(huì)形成草率的態(tài)度,以偏概全,缺乏一種科學(xué)的嚴(yán)謹(jǐn),這是很可怕的。
    所以我們看到,首先教師引導(dǎo)學(xué)生確定了小范圍的意識(shí),在數(shù)據(jù)比較多的時(shí)候,我們可以先確定一個(gè)范圍,在有限的時(shí)間里研究這個(gè)范圍中的數(shù)的`特征,得到在1-100這個(gè)范圍內(nèi)5的倍數(shù)的特征,個(gè)位上的數(shù)字是5或0。這時(shí)候教師沒(méi)有滿(mǎn)足于此,而是引導(dǎo)學(xué)生認(rèn)識(shí)到這個(gè)結(jié)論僅僅適用于1-100這個(gè)小范圍,是不是在所有不等于0的自然數(shù)中都使用呢?還需要研究。所以接下來(lái)在教師的引導(dǎo)下,學(xué)生開(kāi)始認(rèn)識(shí)到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。只有進(jìn)行了研究,才能得到正確的結(jié)論,最后在學(xué)習(xí)和生活中進(jìn)行應(yīng)用。
    在這一過(guò)程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,同時(shí)有了一定的范圍意識(shí),知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過(guò)程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。相信長(zhǎng)此以往,學(xué)生會(huì)逐漸明確范圍意識(shí),建立科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度的。
    在教學(xué)2、5的倍數(shù)的特征之前,教師找了幾個(gè)學(xué)生訪談,想了解學(xué)生學(xué)習(xí)的前在狀態(tài),當(dāng)然所找的學(xué)生是各種層次都有的。對(duì)于2、5的倍數(shù)的特征,應(yīng)該說(shuō)比較簡(jiǎn)單,所以中等學(xué)生和優(yōu)等生都已經(jīng)知道了它們的特征2的倍數(shù)肯定是雙數(shù),5的倍數(shù)末尾是5或0,只有個(gè)別學(xué)困生一無(wú)所知。同時(shí)有個(gè)奇怪的現(xiàn)象,所有知道這個(gè)結(jié)論的同學(xué)都認(rèn)為這個(gè)結(jié)論非常正確,以后就能用這個(gè)結(jié)論來(lái)進(jìn)行判斷,不需要進(jìn)行驗(yàn)證,當(dāng)然他們的結(jié)論獲得也僅僅是知道的過(guò)程,沒(méi)有經(jīng)歷探究過(guò)程。如果長(zhǎng)此以往,學(xué)生僅僅是知識(shí)的接受者,而不是知識(shí)的探究者,以后將只習(xí)慣于被動(dòng)接受,而不會(huì)主動(dòng)發(fā)現(xiàn)。
    所以,在教學(xué)中,當(dāng)學(xué)生找到1-100內(nèi)2和5的倍數(shù)特征時(shí),教師追問(wèn)學(xué)生,是不是比100大的自然數(shù)中,也有這個(gè)特征呢?學(xué)生異口同聲地都認(rèn)為是。這里就需要教師幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)科學(xué)的學(xué)習(xí)態(tài)度。我們看到,教師告訴學(xué)生是不是有這個(gè)特征,我們沒(méi)有研究過(guò),所以只是我們的猜想。當(dāng)教師一點(diǎn)撥后,大部分學(xué)生還是比較認(rèn)可的。確實(shí),沒(méi)有經(jīng)過(guò)研究,怎么能知道是呢?
    有了這樣的猜想,最后通過(guò)舉例的方法驗(yàn)證后,學(xué)生沒(méi)有找到反例,這時(shí)教師才告訴學(xué)生,一開(kāi)始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話(huà),不同的時(shí)候有不同的界定,沒(méi)有經(jīng)過(guò)驗(yàn)證前,只是猜想;只有研究后,猜想才可能變成結(jié)論。
    相信學(xué)生不斷經(jīng)歷這種過(guò)程后,他們才會(huì)具備科學(xué)的態(tài)度,才會(huì)學(xué)會(huì)對(duì)自己所說(shuō)的話(huà)負(fù)責(zé),才不會(huì)貿(mào)然下結(jié)論,當(dāng)然我們教師也要鼓勵(lì)學(xué)生大膽猜想。
    從這節(jié)課中,我們看到,當(dāng)學(xué)生擴(kuò)大范圍,研究比100大的5的倍數(shù)的特征時(shí),教師就引導(dǎo)可以用舉例的方法來(lái)研究,尋找有沒(méi)有不符合這一特征的例子,如果有,說(shuō)明一開(kāi)始的猜想是錯(cuò)誤的;全班舉了無(wú)數(shù)個(gè)例子,如果沒(méi)有,那么在小學(xué)階段,可以認(rèn)為是正確的。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會(huì)大膽猜想,并有方法來(lái)驗(yàn)證自己的猜想了。
    隨著時(shí)代的發(fā)展,隨著新課改的不斷深入,我們教師在制定教學(xué)目標(biāo)時(shí),不要再僅僅關(guān)注學(xué)生知識(shí)目標(biāo),更重要的是要關(guān)注學(xué)生的能力目標(biāo),只有從小培養(yǎng),從小滲透,那么我們學(xué)生對(duì)數(shù)學(xué)的認(rèn)識(shí)才會(huì)更深刻,也才會(huì)在數(shù)學(xué)上有更大的造詣。
    3的倍數(shù)的特征教學(xué)反思100字篇九
    《3的倍數(shù)的特征》的教學(xué)是五年級(jí)數(shù)學(xué)上冊(cè)第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識(shí)點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
    3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線(xiàn)的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問(wèn)題,下面我進(jìn)行做幾點(diǎn)反思。
    在導(dǎo)入環(huán)節(jié),我通過(guò)復(fù)習(xí)舊知識(shí)進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái),盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識(shí)間的'矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
    猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以?xún)?nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以?xún)?nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來(lái),學(xué)生不僅學(xué)會(huì)本節(jié)課知識(shí),更掌握了科學(xué)的探究方法。
    本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對(duì)學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來(lái)沒(méi)有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無(wú)疑是開(kāi)發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話(huà)語(yǔ)權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
    3的倍數(shù)的特征教學(xué)反思100字篇十
    《3的倍數(shù)特征》進(jìn)行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進(jìn)行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號(hào),根據(jù)編號(hào)做游戲。由于每個(gè)學(xué)生的編號(hào)不一樣,所以在做游戲的時(shí)候,每個(gè)學(xué)生集中注意力,傾聽(tīng)游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,同時(shí),對(duì)3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來(lái)是采用提出猜想,舉出個(gè)例否定猜想來(lái)過(guò)渡。讓學(xué)生充分地認(rèn)識(shí)到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開(kāi)始新的探索。在探索過(guò)程中借助“百數(shù)表”,讓學(xué)生獨(dú)立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個(gè)位有什么特點(diǎn),再次否定了之前的思維定式。由于個(gè)位上沒(méi)有特點(diǎn),所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對(duì)于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當(dāng)學(xué)生斜著觀察時(shí)能發(fā)現(xiàn)個(gè)位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時(shí)提出“什么是沒(méi)有變的?”問(wèn)題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和沒(méi)有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過(guò)研究每一斜行發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個(gè)規(guī)律后,下面開(kāi)始延伸這個(gè)規(guī)律。一方面:驗(yàn)證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個(gè)規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個(gè)規(guī)律?通過(guò)兩方面的驗(yàn)證,再次強(qiáng)調(diào)了這個(gè)規(guī)律是普遍存在的,而這時(shí)3的倍數(shù)特征已經(jīng)歸結(jié)為:一個(gè)數(shù)各位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過(guò)練習(xí)鞏固加強(qiáng),練習(xí)的設(shè)計(jì)是三道題,這三道題設(shè)計(jì)為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問(wèn)題。通過(guò)做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯(cuò)。最后,對(duì)本節(jié)課的知識(shí)進(jìn)行了延伸,通過(guò)出示課本第13頁(yè)“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個(gè)位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達(dá)到學(xué)知識(shí)不但要知其然還要知其所以然。整個(gè)教學(xué)過(guò)程中,學(xué)生能在猜想、操作、驗(yàn)證、交流、歸納的數(shù)學(xué)活動(dòng)中獲得豐富的數(shù)學(xué)經(jīng)驗(yàn),同時(shí)這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過(guò)本節(jié)課的教學(xué)以及學(xué)生的掌握情況,最終檢測(cè)本節(jié)課的目標(biāo)較好的達(dá)成。但反思這節(jié)課的不足,我覺(jué)得在每個(gè)環(huán)節(jié)上的過(guò)渡應(yīng)該更加的自然。另外,在小組討論的時(shí)候應(yīng)多關(guān)注學(xué)生的交流,對(duì)學(xué)生進(jìn)行適時(shí)地指導(dǎo)。基于第一節(jié)課的優(yōu)點(diǎn)和不足,進(jìn)行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過(guò)本節(jié)課,所以對(duì)于學(xué)生們來(lái)說(shuō)已經(jīng)是舊知識(shí)。要把舊知識(shí)重新來(lái)講,如果照搬之前的授課方式已經(jīng)遠(yuǎn)遠(yuǎn)不夠了。如何更改,這給我提出來(lái)一個(gè)新的問(wèn)題。為此,這節(jié)課我做了適當(dāng)?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:
    1、學(xué)生在舉例驗(yàn)證猜想的時(shí)候,讓學(xué)生體會(huì)反例的作用,如果有一個(gè)反例的存在,就說(shuō)明猜想的結(jié)論是錯(cuò)誤的。
    2、在探索3的倍數(shù)特征時(shí),對(duì)于100以?xún)?nèi)3的倍數(shù),應(yīng)如何著手驗(yàn)證,怎么選取數(shù)來(lái)驗(yàn)證,這一環(huán)節(jié)讓學(xué)生體會(huì):在研究規(guī)律的時(shí)候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。
    3、在拓展規(guī)律的.時(shí)候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會(huì)規(guī)律的適用范圍。
    4、在做練習(xí)的時(shí)候,第2小題,關(guān)注學(xué)生思考問(wèn)題是否全面,關(guān)注學(xué)生的思考過(guò)程。
    5、練習(xí)的第3小題,一道解決問(wèn)題的題目,通過(guò)讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時(shí)也說(shuō)明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒(méi)有完全的在黑板上板書(shū),另外,本節(jié)課中學(xué)生會(huì)超前說(shuō)出所有問(wèn)題的答案,使得教師略顯失措,我覺(jué)得這是因?yàn)槲覀鋵W(xué)生還不夠。在今后的教學(xué)中,我會(huì)改進(jìn)自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計(jì)出學(xué)生更能接受和喜歡的課。