高二下數(shù)學教案(模板18篇)

字號:

    教案的編寫需要注重教學策略的選擇和安排。教案的設計要貼近學生的生活實際,激發(fā)學生的學習興趣。以下是一些優(yōu)秀教師編寫的教案范本,供大家參考和借鑒,希望可以提高教學水平。
    高二下數(shù)學教案篇一
    1、地位、作用和特點:
    《xxx》是高中數(shù)學課本第xx冊(x修)的第xx章“xxx”的第xx節(jié)內(nèi)容。
    本節(jié)是在學習了之后編排的。通過本節(jié)課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是xx;特點之二是:xxx。
    教學目標:
    根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:
    (1)知識目標:a、b、c。
    (2)能力目標:a、b、c。
    (3)德育目標:a、b。
    教學的重點和難點:
    (1)教學重點:
    (2)教學難點:
    基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學xx真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領(lǐng)會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:
    導入新課新課教學反饋發(fā)展。
    學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。
    1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關(guān)知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
    本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導出,這正是一個分析和推理的全過程。
    2、讓學生親自經(jīng)歷運用科學方法探索的過程。主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創(chuàng)設探索規(guī)律的情境,引導學生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
    3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。
    4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
    (一)、課題引入:
    教師創(chuàng)設問題情景(創(chuàng)設情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。c、講述數(shù)學科學的有關(guān)情況。)激發(fā)學生的探究xx,引導學生提出接下去要研究的問題。
    (二)、新課教學:
    1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關(guān)的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
    2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的'實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
    (三)、實施反饋:
    1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。
    2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
    在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導過程,右邊實例應用。
    以上是我對《xxx》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
    總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。
    高二下數(shù)學教案篇二
    (1)了解周期現(xiàn)象在現(xiàn)實中廣泛存在;(2)感受周期現(xiàn)象對實際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡單的實際問題的周期;(5)能利用周期函數(shù)定義進行簡單運用。
    2、過程與方法。
    通過創(chuàng)設情境:單擺運動、時鐘的圓周運動、潮汐、波浪、四季變化等,讓學生感知周期現(xiàn)象;從數(shù)學的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實踐中加以應用。
    3、情感態(tài)度與價值觀。
    通過本節(jié)的學習,使同學們對周期現(xiàn)象有一個初步的認識,感受生活中處處有數(shù)學,從而激發(fā)學生的學習積極性,培養(yǎng)學生學好數(shù)學的信心,學會運用聯(lián)系的觀點認識事物。
    高二下數(shù)學教案篇三
    教材分析:
    本學期我任教(3)班數(shù)學,所選的教材是人民教育出版社職業(yè)教育中心編著的《數(shù)學(基礎(chǔ)版)》。該教材是在原有職業(yè)高中數(shù)學教材的基礎(chǔ)上,依據(jù)國家教育部新制定的《中等職業(yè)學校數(shù)學教學大綱(試行)》重新編寫的,具有以下特點:
    1、注重基礎(chǔ):
    “大綱”對傳統(tǒng)的初等數(shù)學教育內(nèi)容進行了精選,把理論上、方法上以及代生產(chǎn)與生活中得到廣泛應用的知識作為各專業(yè)必學的基本內(nèi)容。根據(jù)“大綱”要求,把函數(shù)與幾何,以及研究函數(shù)與幾何的方法作為教材的核心內(nèi)容。
    2、降低知識起點。
    多數(shù)中職學生對學過的數(shù)學知識需要復習與提高,才能順利進入中職階段的數(shù)學學習。這套數(shù)學教材編寫從學生的實際出發(fā),提高中職學生的數(shù)學素質(zhì),使多數(shù)學生能完成“大綱”中規(guī)定的教學要求,以保證中職學生能達到高中階段的基本數(shù)學水準。
    3、增加較大的使用彈性。
    考慮中等職業(yè)學校專業(yè)的多樣性,各對數(shù)學能力的要求也不相同,教學要求給出了較大的選擇范圍,增加了教學的彈性。教材中給出了三個層次:一是必學的內(nèi)容分兩種教學要求(在教參中指出);二是教材中配備一些難度較大的習題,供學有余力的學生去做,培養(yǎng)這些學生的解題能力;三是編寫了選學內(nèi)容,選學內(nèi)容主要是深化基本內(nèi)容所學知識和應用基本內(nèi)容解決實際問題的能力。
    4、注重數(shù)學應用意識的培養(yǎng)。
    每章專設應用一節(jié),列舉數(shù)學在生活實際、現(xiàn)代科學和生產(chǎn)中應用的例子,培養(yǎng)學生用數(shù)學解決實際問題的意識和能力。
    5、注重培養(yǎng)學生使用計算機工具的能力。
    在“大綱”中,要求培養(yǎng)學生使用基本計算工具的恩能夠里。這就要求學生掌握使用計數(shù)器的技能,所以在新教材中增加了用計數(shù)器做的練習題。有條件的學生還可以培養(yǎng)學生使用計算機技術(shù)。
    教材內(nèi)容:
    本學期使用的是第二冊的教材,內(nèi)容包括:平面解析幾何,立體幾何,排列、組合與二項式定理,概率與統(tǒng)計初步。
    每章編寫結(jié)構(gòu):引言,正文(大節(jié)、小節(jié)、聯(lián)系、習題),復習問題和復習參考題,閱讀材料(數(shù)學文化)等。除個別標注星號的'選學內(nèi)容外,都是必學內(nèi)容。
    學生情況分析及教學對策:
    課所涉及到的舊知識點;對學生的要求以能處理簡單的操作題為主。另外,舒適的環(huán)境對學生的情緒也有挺大的影響,因而在教學過程中應滲入環(huán)境教育,培養(yǎng)學生的環(huán)境保護意識。
    教學進度表。
    略
    高二下數(shù)學教案篇四
    本章知識點。
    幾類常見的問題。
    (一)含參數(shù)的不等式的解法。
    例1解關(guān)于x的不等式.
    例2解關(guān)于x的不等式.
    例3解關(guān)于x的不等式.
    例4解關(guān)于x的不等式。
    例5滿足的x的集合為a;滿足的x。
    的集合為b1若ab求a的取值范圍2若ab求a的取值范圍3若ab為僅含一個元素的集合,求a的值。
    (二)函數(shù)的最值與值域。
    例6求函數(shù)的最大值,下列解法是否正確?為什么?
    解一:,
    解二:當即時,
    例7若,求的最值。
    例8已知x,y為正實數(shù),且成等差數(shù)列,成等比數(shù)列,求的取值范圍。
    例9設且,求的最大值。
    例10函數(shù)的最大值為9,最小值為1,求a,b的值。
    1.
    2.,若,求a的取值范圍。
    3.
    4.
    5.當a在什么范圍內(nèi)方程:有兩個不同的負根。
    6.若方程的兩根都對于2,求實數(shù)m的范圍。
    7.求下列函數(shù)的最值:
    1
    2
    8.1時求的最小值,的最小值。
    2設,求的最大值。
    3若,求的最大值。
    4若且,求的最小值。
    9.若,求證:的最小值為3。
    10.制作一個容積為的圓柱形容器(有底有蓋),問圓柱底半徑和。
    高各取多少時,用料最省?(不計加工時的損耗及接縫用料)。
    高二下數(shù)學教案篇五
    教學目標:
    1、進一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
    2、在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;
    3、進一步提高問題探究意識、知識應用意識和同伴合作意識。
    教學重點:
    問題的提出與解決。
    教學難點:
    如何進行問題的探究。
    啟發(fā)探究式。
    教學過程:
    研究方向提示:
    1、數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;
    2、研究所給數(shù)列的項之間的關(guān)系;
    3、研究所給數(shù)列的子數(shù)列;
    4、研究所給數(shù)列能構(gòu)造的新數(shù)列;
    5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;
    6、研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復數(shù)、圖形、實際意義等)。
    針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。
    課堂小結(jié):
    1、研究一個數(shù)列可以從哪些方面提出問題并進行研究?
    2、你最喜歡哪位同學的研究?為什么?
    高二下數(shù)學教案篇六
    本章知識點
    幾類常見的問題
    (一) 含參數(shù)的不等式的解法
    例1解關(guān)于x的不等式 .
    例2解關(guān)于x的不等式 .
    例3解關(guān)于x的不等式 .
    例4解關(guān)于x的不等式
    例5 滿足 的x的集合為a;滿足 的x
    的集合為b 1 若ab 求a的取值范圍 2 若ab 求a的取值范圍 3 若ab為僅含一個元素的集合,求a的值.
    (二)函數(shù)的最值與值域
    例6 求函數(shù) 的最大值,下列解法是否正確?為什么?
    解一: ,
    解二: 當 即 時,
    例7 若 ,求 的最值。
    例8 已知x , y為正實數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.
    例9 設 且 ,求 的最大值
    例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。
    1.
    2. , 若 ,求a的取值范圍
    3.
    4.
    5.當a在什么范圍內(nèi)方程: 有兩個不同的負根
    6.若方程 的兩根都對于2,求實數(shù)m的范圍
    7.求下列函數(shù)的最值:
    1
    2
    8.1 時求 的最小值, 的最小值
    2設 ,求 的最大值
    3若 , 求 的最大值
    4若 且 ,求 的最小值
    9.若 ,求證: 的最小值為3
    10.制作一個容積為 的圓柱形容器(有底有蓋),問圓柱底半徑和
    高各取多少時,用料最省?(不計加工時的損耗及接縫用料)
    高二下數(shù)學教案篇七
    (1)推廣角的概念、引入大于角和負角;(2)理解并掌握正角、負角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運動變化觀點,深刻理解推廣后的角的概念;(6)揭示知識背景,引發(fā)學生學習興趣.(7)創(chuàng)設問題情景,激發(fā)學生分析、探求的學習態(tài)度,強化學生的參與意識.
    2、過程與方法。
    通過創(chuàng)設情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習.
    3、情態(tài)與價值。
    通過本節(jié)的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分.角的概念推廣以后,知道角之間的關(guān)系.理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物.
    教學重難點。
    重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法.
    難點:終邊相同的角的表示.
    教學工具。
    投影儀等.
    教學過程。
    【創(chuàng)設情境】。
    思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了1.25。
    小時,你應當如何將它校準?當時間校準以后,分針轉(zhuǎn)了多少度?
    [取出一個鐘表,實際操作]我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角.
    【探究新知】。
    1.初中時,我們已學習了角的概念,它是如何定義的呢?
    [展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形.如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置ob,就形成角a.旋轉(zhuǎn)開始時的射線叫做角的始邊,ob叫終邊,射線的端點o叫做叫a的頂點.
    [展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性.為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負角(negativeangle).如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle).
    8.學習小結(jié)。
    (1)你知道角是如何推廣的嗎?
    (2)象限角是如何定義的呢?
    (3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。
    線上的角的集合.
    五、評價設計。
    1.作業(yè):習題1.1a組第1,2,3題.
    2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
    進一步理解具有相同終邊的角的特點.
    課后小結(jié)。
    (1)你知道角是如何推廣的嗎?
    (2)象限角是如何定義的呢?
    (3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。
    線上的角的集合.
    課后習題。
    作業(yè):
    1、習題1.1a組第1,2,3題.
    2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
    進一步理解具有相同終邊的角的特點.
    板書。
    略
    高二下數(shù)學教案篇八
    重點與難點分析:
    本節(jié)課教學方法主要是“自學輔導與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識結(jié)構(gòu)完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發(fā)現(xiàn)規(guī)律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:
    (1)由“先教后學”轉(zhuǎn)向“先學后教。
    本節(jié)課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現(xiàn)了以“學生為主體”的教育思想。
    (2)在層次教學中培養(yǎng)學生的思維能力。
    本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。
    公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
    綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。
    教法建議:
    由“先教后學”轉(zhuǎn)向“先學后教”
    本節(jié)課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現(xiàn)了以“學生為主體”的教育思想。
    (2)在層次教學中培養(yǎng)學生的思維能力。
    本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。
    公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
    綜合練習的.多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。
    這里注意兩點:
    一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。
    二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。
    高二下數(shù)學教案篇九
    1、地位、作用和特點:
    《xx》是高中數(shù)學課本第xx冊(x修)的第xx章“xx”的第xx節(jié)內(nèi)容。
    本節(jié)是在學習了之后編排的。通過本節(jié)課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I?、生產(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是xx;特點之二是:xx。
    教學目標:
    根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:
    (1)知識目標:a、b、c。
    (2)能力目標:a、b、c。
    (3)德育目標:a、b。
    教學的重點和難點:
    (1)教學重點:
    (2)教學難點:
    基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學xx真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領(lǐng)會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:
    導入新課新課教學反饋發(fā)展。
    學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的'能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。
    1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關(guān)知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
    本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導出,這正是一個分析和推理的全過程。
    2、讓學生親自經(jīng)歷運用科學方法探索的過程。主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創(chuàng)設探索規(guī)律的情境,引導學生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
    3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。
    4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
    (一)、課題引入:
    教師創(chuàng)設問題情景(創(chuàng)設情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。c、講述數(shù)學科學的有關(guān)情況。)激發(fā)學生的探究xx,引導學生提出接下去要研究的問題。
    (二)、新課教學:
    1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關(guān)的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
    2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
    (三)、實施反饋:
    1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。
    2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
    在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導過程,右邊實例應用。
    以上是我對《xx》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
    總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。
    高二下數(shù)學教案篇十
    1.函數(shù)單調(diào)性的定義:
    (1)一般地,設函數(shù)的定義域為a,區(qū)間.
    如果對于區(qū)間i內(nèi)的任意兩個值,當時,都有_______________,那么就說在區(qū)間i上是單調(diào)增函數(shù),i稱為的___________________.
    如果對于區(qū)間i內(nèi)的任意兩個值,當時,都有_______________,那么就說在區(qū)間i上是單調(diào)減函數(shù),i稱為的___________________.
    (2)如果函數(shù)在區(qū)間i上是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說在區(qū)間i上具有___________性,單調(diào)增區(qū)間或單調(diào)減區(qū)間統(tǒng)稱為____________________.
    2.復合函數(shù)的單調(diào)性:
    對于函數(shù)如果當在區(qū)間上和在區(qū)間上同時具有單調(diào)性,則復合函數(shù)在區(qū)間上具有__________,并且具有這樣的規(guī)律:___________________________.
    3.求函數(shù)單調(diào)區(qū)間或證明函數(shù)單調(diào)性的方法:
    (1)______________;(2)____________________;(3)__________________.
    【自我檢測】。
    1.函數(shù)在r上是減函數(shù),則的取值范圍是___________.
    2.函數(shù)在上是_____函數(shù)(填增或減).
    3.函數(shù)的單調(diào)區(qū)間是_____________________.
    4.函數(shù)在定義域r上是單調(diào)減函數(shù),且,則實數(shù)a的取值范圍是________________________.
    5.已知函數(shù)在區(qū)間上是增函數(shù),則的大小關(guān)系是_______.
    6.函數(shù)的單調(diào)減區(qū)間是___________________.
    【例1】填空題:
    (1)若函數(shù)的單調(diào)增區(qū)間是,則的遞增區(qū)間是_________.
    (2)函數(shù)的單調(diào)減區(qū)間是________________.
    (3)若上是增函數(shù),則a的取值范圍是_____________.
    (4)若是r上的減函數(shù),則a的取值范圍是_________.
    【例2】求證:函數(shù)在區(qū)間上是減函數(shù).
    【例3】已知函數(shù)對任意的,都有,且當時,.
    (1)求證:是r上的增函數(shù);。
    (2)若,解不等式.
    1.函數(shù)單調(diào)減區(qū)間是_________________.
    2.若函數(shù)在區(qū)間上具有單調(diào)性,則實數(shù)a的取值范圍是______.
    3.已知函數(shù)是定義在上的'增函數(shù),且,則實數(shù)x的取值范圍是_________________________.
    4.已知在內(nèi)是減函數(shù),,且,設,,則a,b的大小關(guān)系是_________________.
    5.若函數(shù)上都是減函數(shù),則上是______.(填增函數(shù)或減函數(shù))。
    6.函數(shù)的遞減區(qū)間是________________.
    7.已知函數(shù)上單調(diào)遞減,則a的取值范圍是_________.
    8.已知函數(shù)滿足對任意的,都有成立,則a的取值范圍是_________.
    9.確定函數(shù)的單調(diào)性.
    10.已知函數(shù)是定義在上的減函數(shù),且滿足,,若,求的取值范圍.
    錯題卡題號錯題原因分析。
    高二數(shù)學教案:數(shù)的單調(diào)性教案(答案)。
    一、課前準備:
    1.(1),單調(diào)增區(qū)間,,單調(diào)減區(qū)間,
    (2)單調(diào),單調(diào)區(qū)間。
    2.單調(diào)性,同則增異則減。
    3.(1)定義法(2)圖象法(3)導函數(shù)法。
    【自我檢測】。
    1.2.增3.和4.
    5.6.
    二、課堂活動:
    【例1】。
    (1)(2)(3)(4)。
    【例2】證明:設。
    【例3】(1)證明:
    (2)解:
    三、課后作業(yè)。
    1.2.3.4.
    5.減函數(shù)6.7.8.
    9.解:定義域為,任取,且。
    10.解:
    高二下數(shù)學教案篇十一
    一、指導思想:
    全面貫徹教育方針,深入實施素質(zhì)教育,使學生在高一學習的基礎(chǔ)上,進一步體會數(shù)學對發(fā)展自己思維能力的作用,體會數(shù)學對推動社會進步和科學發(fā)展的意義以及數(shù)學的文化價值,提高數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。
    二、教學具體目標。
    1、期中考前完成必修3、選修2-3第一章。
    2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
    3、提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
    三、教材特點:
    我們所使用的教材是人教版《普通高中課程標準實驗教科書》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,強調(diào)了問題提出,抽象概括,分析理解,思考交流等研究性學習過程。具體特點如下:
    1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。
    2、“問題性”:專門安排了“課題學習”和“探究活動”,培養(yǎng)問題意識,孕育創(chuàng)新精神。
    3、“科學性”與“思想性”:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。
    4、“時代性”與“應用性”:教材中有“信息技術(shù)建議”和“信息技術(shù)應用”,以具有時代性和現(xiàn)實感的素材創(chuàng)設情境,加強數(shù)學活動,發(fā)展應用意識。
    5、“人文應用價值性”:編寫了一些閱讀材料,開拓學生視野,從數(shù)學史的發(fā)展足跡中獲取營養(yǎng)和動力,全面感受數(shù)學的科學價值、應用價值和文化價值。
    四、教法分析:
    1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生“看個究竟”的沖動,以達到培養(yǎng)其興趣的目的。
    2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
    3、在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
    五、教學措施:
    1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
    2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
    3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
    4、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
    5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
    6、重視數(shù)學應用意識及應用能力的培養(yǎng)。
    六、教學進度安排(略)?。
    高二下數(shù)學教案篇十二
    1.理解平面直角坐標系的意義;掌握在平面直角坐標系中刻畫點的位置的方法。
    2.掌握坐標法解決幾何問題的步驟;體會坐標系的作用。
    體會直角坐標系的作用。
    能夠建立適當?shù)闹苯亲鴺讼担鉀Q數(shù)學問題。
    新授課。
    啟發(fā)、誘導發(fā)現(xiàn)教學。
    多媒體、實物投影儀。
    一、復習引入:
    情境1:為了確保宇宙飛船在預定的軌道上運行,并在按計劃完成科學考察任務后,安全、準確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。
    情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點不同的畫布所在的位置。
    問題1:如何刻畫一個幾何圖形的位置?
    問題2:如何創(chuàng)建坐標系?
    二、學生活動。
    學生回顧。
    刻畫一個幾何圖形的位置,需要設定一個參照系。
    1、數(shù)軸它使直線上任一點p都可以由惟一的實數(shù)x確定。
    2、平面直角坐標系。
    在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點p都可以由惟一的實數(shù)對(x,y)確定。
    3、空間直角坐標系。
    在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點p都可以由惟一的實數(shù)對(x,y,z)確定。
    三、講解新課:
    1、建立坐標系是為了確定點的位置,因此,在所建的坐標系中應滿足:
    任意一點都有確定的坐標與其對應;反之,依據(jù)一個點的'坐標就能確定這個點的位置。
    2、確定點的位置就是求出這個點在設定的坐標系中的坐標。
    四、數(shù)學運用。
    例1選擇適當?shù)钠矫嬷苯亲鴺讼?,表示邊長為1的正六邊形的頂點。
    變式訓練。
    變式訓練。
    2、在面積為1的中,建立適當?shù)淖鴺讼?,求以m,n為焦點并過點p的橢圓方程。
    例3已知q(a,b),分別按下列條件求出p的坐標。
    (1)p是點q關(guān)于點m(m,n)的對稱點。
    (2)p是點q關(guān)于直線l:x-y+4=0的對稱點(q不在直線1上)。
    變式訓練。
    用兩種以上的方法證明:三角形的三條高線交于一點。
    思考。
    通過平面變換可以把曲線變?yōu)橹行脑谠c的單位圓,請求出該復合變換?
    五、小結(jié):本節(jié)課學習了以下內(nèi)容:
    1.平面直角坐標系的意義。
    2.利用平面直角坐標系解決相應的數(shù)學問題。
    高二下數(shù)學教案篇十三
    理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關(guān)的實際問題。
    (2)技能目標。
    經(jīng)歷從分數(shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學生類比的探究能力,加深對從特殊到一般數(shù)學的思想認識。
    (3)情感態(tài)度與價值觀。
    教學中讓學生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學生在學知識的同時感受探索的樂趣和成功的體驗。
    重點:運用分式的乘除法法則進行運算。
    難點:分子、分母為多項式的分式乘除運算。
    (一)提出問題,引入課題。
    俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:
    問題1:求容積的高是,(引出分式乘法的學習需要)。
    問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學習需要)。
    從實際出發(fā),引出分式的乘除的實在存在意義,讓學生感知學習分式的'乘法和除法的實際需要,從而激發(fā)學生興趣和求知欲。
    (二)類比聯(lián)想,探究新知。
    從學生熟悉的分數(shù)的乘除法出發(fā),引發(fā)學生的學習興趣。
    解后總結(jié)概括:
    (1)式是什么運算?依據(jù)是什么?
    (2)式又是什么運算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應給于引導,學生應該能說出依據(jù)的是:分數(shù)的乘法和除法法則)教師加以肯定,并指出與分數(shù)的乘除法法則類似,引導學生類比分數(shù)的乘除法則,猜想出分式的乘除法則。
    (分式的乘除法法則)。
    乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
    除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
    (三)例題分析,應用新知。
    師生活動:教師參與并指導,學生獨立思考,并嘗試完成例題。
    p11的例1,在例題分析過程中,為了突出重點,應多次回顧分式的乘除法法則,使學生耳熟能詳。p11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和學生一起詳細分析,提醒學生關(guān)注易錯易漏的環(huán)節(jié),學會解題的方法。
    (四)練習鞏固,培養(yǎng)能力。
    p13練習第2題的(1)、(3)、(4)與第3題的(2)。
    師生活動:教師出示問題,學生獨立思考解答,并讓學生板演或投影展示學生的解題過程。
    通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。
    (五)課堂小結(jié),回扣目標。
    引導學生自主進行課堂小結(jié):
    1、本節(jié)課我們學習了哪些知識?
    2、在知識應用過程中需要注意什么?
    3、你有什么收獲呢?
    師生活動:學生反思,提出疑問,集體交流。
    (六)布置作業(yè)。
    教科書習題6.2第1、2(必做)練習冊p(選做),我設計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。
    高二下數(shù)學教案篇十四
    1.理解平面直角坐標系的意義;掌握在平面直角坐標系中刻畫點的位置的方法。
    2.掌握坐標法解決幾何問題的步驟;體會坐標系的作用。
    體會直角坐標系的作用。
    能夠建立適當?shù)闹苯亲鴺讼?解決數(shù)學問題。
    新授課
    啟發(fā)、誘導發(fā)現(xiàn)教學.
    多媒體、實物投影儀
    一、復習引入:
    情境1:為了確保宇宙飛船在預定的軌道上運行,并在按計劃完成科學考察任務后,安全、準確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。
    情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點不同的畫布所在的位置。
    問題1:如何刻畫一個幾何圖形的位置?
    問題2:如何創(chuàng)建坐標系?
    二、學生活動
    學生回顧
    刻畫一個幾何圖形的位置,需要設定一個參照系
    1、數(shù)軸 它使直線上任一點p都可以由惟一的實數(shù)x確定
    2、平面直角坐標系
    在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點p都可以由惟一的實數(shù)對(x,y)確定。
    3、空間直角坐標系
    在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點p都可以由惟一的實數(shù)對(x,y,z)確定。
    三、講解新課:
    1、建立坐標系是為了確定點的位置,因此,在所建的坐標系中應滿足:
    任意一點都有確定的坐標與其對應;反之,依據(jù)一個點的坐標就能確定這個點的位置
    2、確定點的位置就是求出這個點在設定的坐標系中的坐標
    四、數(shù)學運用
    例1 選擇適當?shù)钠矫嬷苯亲鴺讼担硎具呴L為1的正六邊形的頂點。
    變式訓練
    變式訓練
    2在面積為1的中,,建立適當?shù)淖鴺讼?,求以m,n為焦點并過點p的橢圓方程
    例3 已知q(a,b),分別按下列條件求出p 的坐標
    (1)p是點q 關(guān)于點m(m,n)的對稱點
    (2)p是點q 關(guān)于直線l:x-y+4=0的對稱點(q不在直線1上)
    變式訓練
    用兩種以上的方法證明:三角形的三條高線交于一點。
    思考
    通過平面變換可以把曲線變?yōu)橹行脑谠c的單位圓,請求出該復合變換?
    五、小 結(jié):本節(jié)課學習了以下內(nèi)容:
    1.平面直角坐標系的意義。
    2. 利用平面直角坐標系解決相應的數(shù)學問題。
    六、課后作業(yè):
    高二下數(shù)學教案篇十五
    《小二黑結(jié)婚》教案(人教版高二選修)。
    一、教學目的及要求。
    趙樹理的章回小說所體現(xiàn)的民族文化特色。
    二、講授的內(nèi)容提要。
    1、人物形象分析。
    2、思想意蘊。
    三、重點、難點。
    重點:民族化、大眾化特色。
    難點:思想意蘊。
    四、教學過程。
    教學課時:2課時。
    第一課時。
    分析二諸葛、三仙姑的同中有異的性格。
    兩人都具有封建思想,都反對兒女自由戀愛,想以家長身份主宰兒女婚姻;兩人都封建迷信,陰陽八卦、黃道黑道,規(guī)矩頗多。
    但兩人也有不同。二諸葛是虔誠的迷信,迷信成了他認識生活、對待生活的唯一標尺;三仙姑是虛假的迷信,迷信成了她欺騙別人、害人利己的法術(shù)。二諸葛既是一個封建家長制的維護者,同時他又是一個善良、厚道的父親;三仙姑則是一個無情的母親,為了滿足自己的欲望,她不惜犧牲女兒的前程。
    思想意蘊。
    趙樹理曾說:'我在作群眾工作的過程中,遇到了非解決不可而又不是輕易能解決了的問題,往往就變成了所要寫的主題。'《小二黑結(jié)婚》便是作者在太行山區(qū)工作時,面對現(xiàn)實困惑而作的藝術(shù)思考。小說描寫的是在解放區(qū)新的歷史條件下一對青年男女沖破封建傳統(tǒng)爭取婚姻自主的故事。小說抨擊了農(nóng)村中的封建殘余勢力,批判了人民群眾中的封建思想,歌頌了新的人物、新的時代風尚。作品完滿的結(jié)局說明了人民政權(quán)是人民實現(xiàn)自主婚姻的最可靠的保證。它表明,在解放區(qū),不僅政治和經(jīng)濟領(lǐng)域有了變革。而且在愛情、婚姻、家庭和道德領(lǐng)域也發(fā)生了天翻地覆的變化。小二黑和小芹的斗爭,已經(jīng)成為解放區(qū)人民反霸除暴的民主改革的一個組成部分。充滿自信,敢于斗爭的新一代農(nóng)民的成長,標志著一個深刻的社會變化已經(jīng)興起,并且正在深入發(fā)展。
    第二課時。
    分析作品的民族化、大眾化特色。
    主題和題材:趙樹理小說總是選取那些現(xiàn)實生活中迫切需要解決的具有重要社會意義的主題,但在選材上卻并不追求轟轟烈烈,而是從普通的日常生活現(xiàn)象入手,以小見大。如《小二黑結(jié)婚》以解放區(qū)仍然存在包辦婚姻的行為做突破口,通過人們司空見慣的生活現(xiàn)象,揭示出反封建思想斗爭的重要性和長期性問題,具有極其重要的現(xiàn)實意義。
    人物形象塑造:趙樹理小說的突出貢獻就是成功地描寫了各類不同思想性格的農(nóng)民形象。他一面熱情謳歌了二黑和小芹這樣的新型農(nóng)民的'典型代表,贊美他們的新思想、新品質(zhì),同時又著力刻畫了像二諸葛、三仙姑這樣一些暫時還愚昧落后但已經(jīng)開始走向轉(zhuǎn)變的農(nóng)民代表。深入挖掘農(nóng)民內(nèi)在的美好品德是趙樹理小說的主要出發(fā)點,于是往往寓批評于詼諧幽默之中,善意的諷刺與熱情的歌頌結(jié)合在一起。
    具體的藝術(shù)表現(xiàn)手法:在藝術(shù)結(jié)構(gòu)上,他借鑒了傳統(tǒng)評書、章回小說的結(jié)構(gòu)特點,采用單線條發(fā)展的手法,注重故事的連貫與完整,故事性強,適應我們民族特別是廣大農(nóng)民的欣賞習慣。在三組人物刻畫上,運用白描手法和注重細節(jié)、動作的描寫,并常給人物起綽號來加強其性格的鮮明性,如二諸葛、三仙姑等。語言樸實生動、幽默風趣,大量使用經(jīng)過提煉加工的地方農(nóng)民的方言口語,表現(xiàn)力強,真正做到了語言的大眾化。
    五、作業(yè)。
    追憶。
    高二下數(shù)學教案篇十六
    【知識點精講】。
    三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應用,掌握公式的逆用和變形。
    三角函數(shù)式的求值的類型一般可分為:。
    (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
    注意點:靈活角的變形和公式的變形重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
    【課堂小結(jié)】。
    三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應用,掌握公式的逆用和變形。
    三角函數(shù)式的求值的類型一般可分為:。
    (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
    三角函數(shù)式常用化簡方法:切割化弦、高次化低次。
    注意點:靈活角的變形和公式的變形。
    重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
    高二下數(shù)學教案篇十七
    教學目標:
    (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
    (2)理解直線與二元一次方程的關(guān)系及其證明。
    (3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點.
    教學重點、難點:直線方程的一般式.直線與二元一次方程(、不同時為0)的對應關(guān)系及其證明.
    教學用具:計算機。
    教學方法:啟發(fā)引導法,討論法。
    教學過程:
    下面給出教學實施過程設計的簡要思路:
    教學設計思路:
    (一)引入的設計。
    前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
    問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的次數(shù)為一次.
    肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:
    問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的次數(shù)為一次.
    肯定學生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的次數(shù)為一次”.
    啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
    學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
    【問題1】“任意直線的方程都是二元一次方程嗎?”
    (二)本節(jié)主體內(nèi)容教學的設計。
    這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
    學生或獨立研究,或合作研究,教師巡視指導.
    經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
    思路一:…。
    思路二:…。
    ……。
    教師組織評價,確定方案(其它待課下研究)如下:
    按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.
    當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.
    當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
    學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
    平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.
    綜合兩種情況,我們得出如下結(jié)論:
    在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程.
    至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”.
    同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
    學生們不難得出:二者可以概括為統(tǒng)一的形式.
    這樣上邊的結(jié)論可以表述如下:
    在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.
    啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
    【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
    師生共同討論,評價不同思路,達成共識:
    (1)當時,方程可化為。
    這是表示斜率為、在軸上的截距為的直線.
    (2)當時,由于、不同時為0,必有,方程可化為。
    這表示一條與軸垂直的直線.
    因此,得到結(jié)論:
    在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.
    為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的.
    【動畫演示】。
    演示“”文件,體會任何二元一次方程都表示一條直線.
    至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.
    (三)練習鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設計在此從略。
    高二下數(shù)學教案篇十八
    1.掌握二項式定理和性質(zhì)以及推導過程。
    2.利用二項式定理求二項展開式中的項的系數(shù)及相關(guān)問題。
    3.使學生能把握數(shù)學問題中的整體與局部的關(guān)系,掌握分析與綜合,特殊和一般的數(shù)學思想。
    教學重點;二項展開式中項的系數(shù)的計算。
    1、復習引入:
    1.的展開式,項數(shù),通項;
    2.二項式系數(shù)的四個性質(zhì)。
    2、例題。
    1.二項式定理及二項式系數(shù)性質(zhì)的簡單應用:
    例1(1)除以9的余數(shù)是_____________________。
    (2)=_______________。
    a.b.c.d.
    (3)已知。
    則____________________。
    (4)如果展開式中奇數(shù)項的系數(shù)和為512,則這個展開式的第8項是()。
    a.b.c.d.
    (5)若則等于()。
    a.b.c.d.
    小結(jié)1.(1)注意二項式定理的正逆運用;
    (2)注意二項式系數(shù)的四個性質(zhì)的運用。
    2.二項展開式中項的系數(shù)計算:
    例2(1)展開式中常數(shù)項等于_____________.
    (2)在的展開式中x的系數(shù)為()。
    a.160b.240c.360d.800。
    (3)已知求:
    小結(jié)2.(1)局部問題抓通項;
    (2)整體系數(shù)賦值法。
    三、課堂練習。
    (1)展開式中,各系數(shù)之和是()。
    a.0b.1c.d.。
    (2)已知的.展開式中的系數(shù)為,常數(shù)的值是_________。
    (3)的展開式中的系數(shù)為______________-(用數(shù)字作答)。
    (4)若,則。
    a.1b.0c.2d.。
    四、課堂小結(jié)。
    五、作業(yè)。