多項式的因式分解教案大全(14篇)

字號:

    教案的編寫需要考慮學生的學情和學習特點,以及教學目標和教學內(nèi)容的要求。教案中的評價方式要具有科學性和客觀性,能夠真實反映學生的學習情況。這些教案是經(jīng)過實際教學實踐和總結(jié)總結(jié)得出的,具有一定的可行性和實用性。
    多項式的因式分解教案篇一
    3、選擇恰當?shù)姆椒ㄟM行因式分解。
    5、體驗應用知識解決問題的樂趣。
    靈活運用恰當?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?、3。
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
    判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。
    2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
    分解因式要注意以下幾點:(1).分解的對象必須是多項式.
    (2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
    4、強化訓練。
    教學引入。
    師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
    動畫演示:
    場景一:正方形折疊演示。
    師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
    [學生活動:各自測量。]。
    鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。
    講授新課。
    找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
    動畫演示:
    場景二:正方形的性質(zhì)。
    師:這些性質(zhì)里那些是矩形的性質(zhì)?
    [學生活動:尋找矩形性質(zhì)。]。
    動畫演示:
    場景三:矩形的性質(zhì)。
    師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
    [學生活動;尋找菱形性質(zhì)。]。
    動畫演示:
    場景四:菱形的性質(zhì)。
    師:這說明正方形具有矩形和菱形的全部性質(zhì)。
    及時提出問題,引導學生進行思考。
    師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
    [學生活動:積極思考,有同學做躍躍欲試狀。]。
    師:請同學們回想矩形與菱形的`定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
    學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:
    “有一組鄰邊相等的矩形叫做正方形?!?BR>    “有一個角是直角的菱形叫做正方形。”
    “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?BR>    師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
    (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。
    (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+。
    例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應用。
    2、20042+20xx被20xx整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
    五、課堂小結(jié):今天你對因式分解又有哪些新的認識?
    多項式的因式分解教案篇二
    知識點:
    因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
    教學目標:
    理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
    考查重難點與常見題型:
    考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
    教學過程:
    多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
    (1)提公因式法。
    如多項式。
    其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。
    (2)運用公式法,即用寫出結(jié)果。
    (3)十字相乘法。
    (4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
    分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
    (5)求根公式法:如果有兩個根x1,x2,那么。
    2、教學實例:學案示例。
    3、課堂練習:學案作業(yè)。
    4、課堂:
    5、板書:
    6、課堂作業(yè):學案作業(yè)。
    7、教學反思:
    多項式的因式分解教案篇三
    因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
    理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
    考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
    因式分解知識點
    多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
    (1)提公因式法
    如多項式
    其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。
    (2)運用公式法,即用
    寫出結(jié)果。
    (3)十字相乘法
    (4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
    分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
    (5)求根公式法:如果有兩個根x1,x2,那么
    2、教學實例:學案示例
    3、課堂練習:學案作業(yè)
    4、課堂:
    5、板書:
    6、課堂作業(yè):學案作業(yè)
    7、教學反思:
    多項式的因式分解教案篇四
    本節(jié)課主要講解的是單項式乘以單項式,是在前面學習了冪的運算性質(zhì)的基礎(chǔ)上學習的,學生學習單項式的乘法并熟練地進行單項式的乘法運算是以后學習多項式乘法的關(guān)鍵,單項式的乘法綜合用到了有理數(shù)的乘法、冪的運算性質(zhì),而后續(xù)的多項式乘以單項式、多項式乘以多項式都要轉(zhuǎn)化為單項式的乘法,因此單項式的乘法將起到承前啟后的作用,在整式乘法中占有獨特的地位。
    2、課標要求:能進行簡單的整式乘法的運算。
    3、教學目標
    (1)、通過實際問題的探索,類比得出單項式乘以單項式的法則,發(fā)展邏輯思維能力。
    (2)、通過單項式乘單項式的訓練,加強法則的應用,提升運算能力。
    (3)、通過運算法則在實際問題中的應用,提高解決實際問題的能力。
    4、教學重點、難點:
    重點:單項式乘單項式法則
    (這是因為要熟練地進行單項式的乘法運算,就必須掌握和深刻理解運算法則,對運算法則理解得越深,運算才能掌握的越好)
    難點:
    1、掌握單項式乘法法則的應用
    2、單項式乘法法則有關(guān)系數(shù)和指數(shù)在計算中的不同規(guī)定
    (這是因為單項式的乘法最終將轉(zhuǎn)化為有理數(shù)的乘法、同底數(shù)的冪相乘、冪的乘方、積的乘方等運算,對于初學者來說,由于難于正確辨認和區(qū)別各種不同的運算及運算所使用的法則,易于將各種法則混淆,造成運算結(jié)果錯誤。)
    本節(jié)課在教學過程的不同階段采用不同的教學方法,以適應教學的需要。
    1、在新課學習階段的單項式的乘法法則的推導過程中,采用了引導發(fā)現(xiàn)法。通過教師設(shè)計的問題,引導學生將需要解決的問題轉(zhuǎn)化成用已學過的知識可解決的問題,讓學生既掌握了新的知識,又培養(yǎng)了學生探索問題的能力。
    2、在新課學習的例題講解階段,采用了講練結(jié)合法。對例題的學習,圍繞問題進行,通過教師引導、學生觀察、思考,尋求解決問題的方法,在解題的過程中展開思維。與此同時還進行多次有較強針對性的練習,分散難點,對學生分層進行訓練,化解難點,并注意及時矯正,使學生在前面出現(xiàn)的錯誤不致于影響后面的解題,為后面的學習掃清障礙,通過例題的學習教師給出了解題規(guī)范,并注意對學生良好學習習慣的培養(yǎng)。
    3、在歸納小結(jié)這個階段采用師生共同總結(jié),旨在訓練學生歸納的方法,并形成相應的知識系統(tǒng),進一步防范學生在運算中容易出現(xiàn)的錯誤。
    4、本節(jié)課訓練量大,利用投影儀,增大課堂容量,提高課堂教學效率。
    1、溫故知新(復習冪的運算性質(zhì))
    單項式與單項式、單項式與多項式相乘最終將轉(zhuǎn)化為有理數(shù)乘法,同底數(shù)冪相乘,冪的乘方,積的乘方等運算,故通過復習冪的運算性質(zhì)為單項式乘單項式、單項式乘多項式的教學作好鋪墊。
    2、單項式乘法法則的推導
    通過實際問題引導學生進行觀察、分析兩個單項式如何相乘,使學生能運用乘法交換律、結(jié)合律和同底數(shù)冪的運算性質(zhì)等知識探索單項式乘以單項式的運算法則。通過類比實際問題的解決引導學生進行歸納,最后得出單項式乘以單項式的法則,以實現(xiàn)教學目標。
    2、應用新知
    例1引導學生觀察,根椐題目特征,辯認出它們是哪種運算,應選用什么樣的法則進行計算,使學生逐漸分清運算類型,正確實運用法則,以實現(xiàn)難點的分散和突破,并提高學生運算的熟練程度。例2是單項式的乘法在實際生活中的應用,通過例2使學生認識到數(shù)學在日常生活和生產(chǎn)中應用十分廣泛,從而逐步培養(yǎng)學生應用數(shù)學的意識。
    在例題的教學過程中除學生給出計算過程,教師要給出規(guī)范的解題過程,并要求學生按規(guī)范的書寫格式進行練習。
    在每道題完成之后,都配有與例題相近的鞏固練習,由學生板演和自主練習,發(fā)現(xiàn)問題及時糾正,以實現(xiàn)教學目標2、3。
    1、設(shè)計分段練習。主要解決重點問題,及時了解學生對數(shù)學知識的掌握情況,發(fā)現(xiàn)問題及時矯正,掃清后續(xù)學習障礙。
    2、采用不同的練習方法。如口答、筆答、板演等,以增加反饋層面。通過練習使大多數(shù)學生的學習情況都能及時反饋,做到對教學情況心中有數(shù)。
    3、及時矯正。對每次練習情況進行講評,對正確的解答及時給予肯定,發(fā)現(xiàn)問題及時評講。
    4、課堂氣氛不夠活躍。
    5、錘煉語言的準確性。
    多項式的因式分解教案篇五
    1、會運用因式分解進行簡單的多項式除法。
    二、教學重點與難點教學重點:
    教學重點。
    因式分解在多項式除法和解方程兩方面的應用。
    教學難點:
    應用因式分解解方程涉及較多的推理過程。
    三、教學過程。
    (一)引入新課。
    (二)師生互動,講授新課。
    一個小問題:這里的x能等于3/2嗎?為什么?
    想一想:那么(4x—9)(3—2x)呢?練習:課本p162課內(nèi)練習。
    合作學習。
    等練習:課本p162課內(nèi)練習2。
    (三)梳理知識,總結(jié)收獲因式分解的兩種應用:
    (四)布置課后作業(yè)。
    作業(yè)本6、42、課本p163作業(yè)題(選做)。
    多項式的因式分解教案篇六
    “整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
    因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
    2、教學目標。
    (1)會推導乘法公式。
    (2)在應用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
    (3)會用提公因式法、公式法進行因式分解。
    (5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
    3、重點、難點和關(guān)鍵。
    重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
    難點:正確運用乘法公式;正確分解因式。
    關(guān)鍵:正確理解乘法公式和因式分解的意義。
    二、本單元教學的方法和策略:
    3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。
    三、課時安排:
    2.1平方差公式1課時。
    2.2完全平方公式2課時。
    多項式的因式分解教案篇七
    教學目標:
    1、進一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法。
    3、選擇恰當?shù)姆椒ㄟM行因式分解4、應用因式分解來解決一些實際問題。
    5、體驗應用知識解決問題的樂趣。
    教學重點:靈活運用因式分解解決問題。
    教學難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒?,拓展練?、3。
    教學過程:
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
    判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。
    2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
    分解因式要注意以下幾點:(1).分解的對象必須是多項式.
    (2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
    4、強化訓練。
    (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應用。
    1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)。
    2、20042+20xx被20xx整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
    五、課堂小結(jié):今天你對因式分解又有哪些新的認識?
    多項式的因式分解教案篇八
    “整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
    因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
    2、教學目標。
    (1)會推導乘法公式。
    (2)在應用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
    (3)會用提公因式法、公式法進行因式分解。
    (5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
    3、重點、難點和關(guān)鍵。
    重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
    難點:正確運用乘法公式;正確分解因式。
    關(guān)鍵:正確理解乘法公式和因式分解的意義。
    3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。
    2.1平方差公式1課時。
    2.2完全平方公式2課時。
    2.3用提公因式法進行因式分解1課時。
    多項式的因式分解教案篇九
    大家好!今天我說課的內(nèi)容是《14.3.2公式法》(第一課時),主要內(nèi)容是用平方差公式分解因式。我準備從教材的地位和作用、學情分析、學習目標和重難點的確定、教學環(huán)節(jié)的設(shè)計等方面確定本節(jié)課。
    一、教材的地位和作用。
    因式分解是解析式的一種恒等變形,因式分解不但在解方程等問題中及其重要,在數(shù)學科學其他問題和一般科學研究中也具有廣泛應用,是重要的數(shù)學基礎(chǔ)知識。因式分解的方法一般包括提公因式法、公式法、分組分解法、十字相乘法、待定系數(shù)法等。而在本章只學習提公因式法和公式法,這兩種基本知識和方法。它對數(shù)感和符號意識的形成具有重要作用,是進一步學習分式和分式方程的基礎(chǔ)。在中考題中分式化簡求值問題,不可避免地用到因式分解。而利用平方差公式進行因式分解的基本方法。
    二、學生的學情分析。
    學生已經(jīng)學習了用字母表示數(shù)、整式的概念、整式的加、減、乘、除、乘方,以及用提公因式法分解因式,具備繼續(xù)學習知識的基礎(chǔ)和經(jīng)驗,但在細節(jié)方面還處在欠缺。
    三、教學目標的確定。
    我認真鉆研教材,在考慮學生的實際水平情況下,我設(shè)計如下教學目標。
    教學目標:
    1、掌握平方差公式的特點,能運用平方差公式進行因式分解。
    2、掌握平方差公式分解因式的方法,掌握提公因式法、公式法分解因式綜合應用。
    3、經(jīng)歷探究平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性。
    4、培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的`應用價值。
    教學重點:熟練運用平方差公式進行因式分解。
    教學難點:
    1、掌握平方差公式的特點。
    四、教學過程的設(shè)計。
    本著學生的認知規(guī)律是由淺入深、由易到難。因此在教學環(huán)節(jié)設(shè)計時,我特意設(shè)計如下教學環(huán)節(jié):
    第二環(huán)節(jié)讓學生帶著問題自學課本p116例題以前部分,嘗試回答下列問題:
    (1)有什么特點?
    (2)你能將它分解因式嗎?讓學生帶著問題去自學,目的明確,針對性強,通過學生發(fā)現(xiàn)并描述特點,為下面公式剖析做了鋪墊。然后讓學生口答課本p117頁第一題用一組練習進行鞏固加深對公式的認識,另外我選擇教材的練習題的目的是書本是我們學習的藍本,是專家們深思熟慮后的成果。
    第三個環(huán)節(jié)通過小組互學,探討公式。用3個問題,觀察公式回答下列問題:
    (1)這個公式有什么特點?你能用語言敘述這個公式嗎?
    (2)公式中字母a、b可以表示什么?
    (3)因式分解平方差公式與我們前面所學的乘法公式平方差公式有什么區(qū)別?通過小組合作探究,學生深入探究,教師加以引導,剖析公式,學習難點得以突破。
    第四個環(huán)節(jié),在學生已經(jīng)掌握公式的基礎(chǔ)上,進行運用平方差公式進行因式分解,由一組簡單基礎(chǔ)題目入手,符合學生認知規(guī)律,同時有利于增強學生的自信心。然后解決課前引入的問題,提出問題,便要解決問題,這樣前后呼應。)。
    第五個環(huán)節(jié)通過教師引導,例題精講,讓學生掌握因式分解的方法。
    (1)(2)(3)通過例題第一小題的設(shè)計目的是讓學生發(fā)現(xiàn)因式分解應分解徹底,第二和第三個題目目的是讓學生能夠總結(jié)出因式分解的一般步驟:一提;二用;三查。教師要強調(diào)必須進行到每一個多項式都不能分解為止。題目設(shè)計層層深入,符合學生認知規(guī)律。然后通過嘗試練習,學生進行展示,便于發(fā)現(xiàn)學生的出現(xiàn)的問題,及時進行糾正。
    第六個環(huán)節(jié),檢驗學生對本節(jié)課的掌握情況,我側(cè)重于學生收獲方面的體驗。通過學生暢談收獲,有利于培養(yǎng)學生的自信心。
    第七個環(huán)節(jié),通過四個題目,檢測學生本節(jié)課對知識的掌握情況。通過四個題目的設(shè)計,旨在讓學生掌握公式的特點,并會熟練地利用平方差公式進行因式分解。其中第四題是實際問題,設(shè)計此題是為了讓學生學會用已有的知識解決實際問題。
    以上是我對本節(jié)課的整體設(shè)計思路,不當之處,敬請專家們批評指正!
    多項式的因式分解教案篇十
    這節(jié)課學習的主要內(nèi)容是運用平方差公式進行因式分解,學習時如果直接就給同學們講把前面在整式的乘法中學習到的平方差公式反過來運用就形成了因式分解的平方差公式,然后就是反復的運用、反復的操練的話,學生學起來就會覺得沒有味道,對數(shù)學有一種厭煩感,所以我就想到了運用逆向思維的方法來學習這節(jié)課的內(nèi)容。
    在新課引入的過程中,我首先讓學生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接著就讓學生利用平方差公式做三個整式乘法的運算。然后,我巧妙的將剛才用平方差公式計算得出的三個多項式作為因式分解的題目請學生嘗試一下。只見我的題目一出來,學生就爭先恐后地回答出來了。待學生回答完之后,我馬上追問“為什么”時,學生輕而易舉地講出是將原來的平方差公式反過來運用,馬上使學生形成了一種逆向的思維方式。之后,我就順利地和同學們一起分析了因式分解中的平方差公式——兩數(shù)的平方差等于這兩個數(shù)的和與這兩個數(shù)的差的積,討論了“怎樣的多項式能用平方差公式因式分解?”可以說,對新問題的引入,我是采取了由淺入深的方法,使學生對新知識不產(chǎn)生任何的畏懼感。接下來,通過例題的講解、練習的鞏固讓學生逐步掌握了運用平方差公式進行因式分解。
    多項式的因式分解教案篇十一
    九九乘法表是小學生學習數(shù)學時一定要學習的內(nèi)容,為小學生抄寫一份九九乘法表也是不少家長的功課之一。其實用excel作一份乘法表也是一個不錯的選擇。it168曾經(jīng)發(fā)表過一篇利用vba編程實現(xiàn)“九九乘法表”的文章,它就為我們指引了一條很不錯的制作乘法表的道路,令我們很受啟發(fā)。
    在excel中,除了用vba編程來制作乘法表以外,我們還可以直接利用公式來寫乘法表,效果也是不錯的。下面我們以excel2007為例來說明。
    一、建立乘法表。
    首先我們在excel中建立一份空的表格,在b1:j1單元格區(qū)域分別填寫數(shù)字1至9,在a2:a10單元格也分別填寫數(shù)字1至9,得到如圖1所示表格。
    圖1excel2007填寫基本數(shù)字。
    圖2excel2007填充單元格。
    在此公式中其實只用到了一個if函數(shù)。所寫乘法表中被乘數(shù)是b1:j1中的數(shù)據(jù),而乘數(shù)則是a2:a10單元格中的數(shù)據(jù)。我們所用公式的意思可以這樣理解:首先判斷被乘數(shù)是否小于或等于乘數(shù),如果是,那么就輸出結(jié)果,如果不是,那么在此單元格中就輸出空值。
    二、為乘法表格添加表格線。
    感覺那乘法表有些簡陋?不要緊,我們?yōu)楸砀窦由媳砀窬€就好了,
    當然,只為那些有內(nèi)容的單元格添加表格線。辦法嗎?首先隱藏不必要的輔助數(shù)據(jù),然后再用條件格式的方法為乘法表添加表格線。
    先點擊a列列標選中a列全部單元格,點擊右鍵,在彈出菜單中點擊“隱藏”命令,然后再點擊第一行的行號,選中全部第一行的單元格,再點擊右鍵,在彈出菜單中點擊“隱藏”命令,這樣,輔助數(shù)據(jù)就不見了。
    現(xiàn)在,我們再選中b2單元格,然后點擊功能區(qū)“開始”選項卡“樣式”功能組“條件格式”按鈕,在彈出的菜單中點擊“新建規(guī)則”命令,打開“新建格式規(guī)則”對話框。然后在“選擇規(guī)則類型”列表中選擇“使用公式確定要設(shè)置格式的單元格”命令,然后在“為符合此公式的值設(shè)置格式”下方的輸入框中輸入公式“=b2“””,如圖3所示。
    圖3excel2007編輯格式規(guī)則。
    再點擊下方的“格式”按鈕,打開“設(shè)置單元格格式”對話框,在“邊框”選項卡中設(shè)置單元格的邊框格式,如圖4所示。當然,我們還可以做出其它的設(shè)置。確定后,b2單元格就會添加有邊框了。
    圖4excel2007設(shè)置單元格格式。
    再選中b2單元格,然后點擊功能區(qū)“開始”選項卡“剪貼板”功能組中“格式刷”按鈕,然后“刷取”b2:j10單元格區(qū)域復制格式,那么,在乘法表中非空的那些單元格就會自動添加邊框線,而沒有內(nèi)容的那些單元格則不會有任何變化。如圖5所示。
    圖5excel2007添加邊框線。
    好了,不多說了,有興趣自己試試吧。
    多項式的因式分解教案篇十二
    3、選擇恰當?shù)姆椒ㄟM行因式分解。
    4、應用因式分解來解決一些實際問題。
    5、體驗應用知識解決問題的樂趣。
    靈活運用因式分解解決問題。
    靈活運用恰當?shù)囊蚴椒纸獾姆椒?,拓展練?、3。
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
    判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。
    (7)。2πr+2πr=2π(r+r)因式分解。
    2、。規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。
    分解因式要注意以下幾點:(1)。分解的對象必須是多項式。
    (2)。分解的結(jié)果一定是幾個整式的乘積的形式。(3)。要分解到不能分解為止。
    4、強化訓練。
    教學引入。
    師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
    動畫演示:
    場景一:正方形折疊演示。
    師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
    [學生活動:各自測量。]。
    鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。
    講授新課。
    找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
    動畫演示:
    場景二:正方形的性質(zhì)。
    師:這些性質(zhì)里那些是矩形的性質(zhì)?
    [學生活動:尋找矩形性質(zhì)。]。
    動畫演示:
    場景三:矩形的性質(zhì)。
    師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
    [學生活動;尋找菱形性質(zhì)。]。
    動畫演示:
    場景四:菱形的性質(zhì)。
    師:這說明正方形具有矩形和菱形的全部性質(zhì)。
    及時提出問題,引導學生進行思考。
    師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
    [學生活動:積極思考,有同學做躍躍欲試狀。]。
    師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
    學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:
    “有一組鄰邊相等的矩形叫做正方形?!?BR>    “有一個角是直角的菱形叫做正方形?!?BR>    “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?BR>    師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
    試一試把下列各式因式分解:。
    (1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。
    (3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+。
    例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應用。
    2、20042+20xx被20xx整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。
    五、課堂小結(jié):今天你對因式分解又有哪些新的認識?
    多項式的因式分解教案篇十三
    教學設(shè)計示例。
    ――完全平方公式(1)。
    教學目標。
    2.理解完全平方式的意義和特點,培養(yǎng)學生的判斷能力.
    3.進一步培養(yǎng)學生全面地觀察問題、分析問題和逆向思維的能力.。
    4.通過分解因式的教學,使學生進一步體會“把一個代數(shù)式看作一個字母”的換元思想。
    教學重點和難點。
    重點:運用完全平方式分解因式.
    難點:靈活運用完全平方公式公解因式.
    教學過程設(shè)計。
    一、復習。
    1.問:什么叫把一個多項式因式分解?我們已經(jīng)學習了哪些因式分解的方法?
    答:把一個多項式化成幾個整式乘積形式,叫做把這個多項式因式分解.我們學過的因式分解的方法有提取公因式法及運用平方差公式法.
    2.把下列各式分解因式:
    (1)ax4-ax2(2)16m4-n4.
    解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。
    (2)16m4-n4=(4m2)2-(n2)2。
    =(4m2+n2)(4m2-n2)。
    =(4m2+n2)(2m+n)(2m-n).
    問:我們學過的乘法公式除了平方差公式之外,還有哪些公式?
    答:有完全平方公式.
    請寫出完全平方公式.
    完全平方公式是:
    (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.
    這節(jié)課我們就來討論如何運用完全平方公式把多項式因式分解.
    二、新課。
    和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,就得到。
    a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
    這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式.運用這兩個式子,可以把形式是完全平方式的多項式分解因式.
    問:具備什么特征的多項是完全平方式?
    答:一個多項式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負,像這樣的式子就是完全平方式.
    問:下列多項式是否為完全平方式?為什么?
    (1)x2+6x+9;(2)x2+xy+y2;
    (3)25x4-10x2+1;(4)16a2+1.
    答:(1)式是完全平方式.因為x2與9分別是x的平方與3的平方,6x=2·x·3,所以。
    x2+6x+9=(x+3).
    (2)不是完全平方式.因為第三部分必須是2xy.
    (3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。
    25x-10x+1=(5x-1).
    (4)不是完全平方式.因為缺第三部分.
    答:完全平方公式為:
    其中a=3x,b=y,2ab=2·(3x)·y.
    例1把25x4+10x2+1分解因式.
    分析:這個多項式是由三部分組成,第一項“25x4”是(5x2)的平方,第三項“1”是1的平方,第二項“10x2”是5x2與1的積的2倍.所以多項式25x4+10x2+1是完全平方式,可以運用完全平方公式分解因式.
    解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
    例2把1-m+分解因式.
    問:請同學分析這個多項式的特點,是否可以用完全平方公式分解因式?有幾種解法?
    答:這個多項式由三部分組成,第一項“1”是1的平方,第三項“”是的平方,第二項“-m”是1與m/4的積的2倍的相反數(shù),因此這個多項式是完全平方式,可以用完全平方公式分解因式.
    解法11-m+=1-2·1·+()2=(1-)2.
    解法2先提出,則。
    1-m+=(16-8m+m2)。
    =(42-2·4·m+m2)。
    =(4-m)2.
    第12頁。
    多項式的因式分解教案篇十四
    會應用平方差公式進行因式分解,發(fā)展學生推理能力.
    2.過程與方法。
    經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性.
    3.情感、態(tài)度與價值觀。
    培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值.
    重、難點與關(guān)鍵。
    1.重點:利用平方差公式分解因式.
    2.難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性.
    3.關(guān)鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來.
    教學方法。
    采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
    教學過程。
    一、觀察探討,體驗新知。
    【問題牽引】。
    請同學們計算下列各式.
    (1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
    【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
    (1)(a+5)(a-5)=a2-52=a2-25;。
    (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
    【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.
    1.分解因式:a2-25;2.分解因式16m2-9n.
    【學生活動】從逆向思維入手,很快得到下面答案:
    (1)a2-25=a2-52=(a+5)(a-5).
    (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
    【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
    平方差公式:a2-b2=(a+b)(a-b).
    評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).
    二、范例學習,應用所學。
    【例1】把下列各式分解因式:(投影顯示或板書)。
    (1)x2-9y2;(2)16x4-y4;。
    (3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
    (5)m2(16x-y)+n2(y-16x).
    【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
    【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
    【學生活動】分四人小組,合作探究.
    解:(1)x2-9y2=(x+3y)(x-3y);。
    (5)m2(16x-y)+n2(y-16x)。
    =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).