教案的編寫需要考慮學生的學習特點和能力,促進他們的主動參與和學習興趣。教案應靈活調(diào)整,根據(jù)學生的實際情況和教學環(huán)境進行適當?shù)恼{(diào)整和改進。這里有一些教學設計的范本,供大家參考和學習。
人教版初中完全平方公式教案篇一
1.弄清完全平方公式的來源及其結構特點,能用自己的。語言說明公式及其特點;
2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。
用不同的`形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續(xù)做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)xxxxxxxxx_;(2);。
1.求的值,其中。
2.若。
對公式的真正理解有待加強。
人教版初中完全平方公式教案篇二
3.4探究實際問題與一元一次方程組。
掌握一元一次方程得解法,了解銷售中的數(shù)量關系。
能夠分析實際問題中的數(shù)量關系,找相等關系,列出一元一次方程。
基本思想。
基本活動經(jīng)驗體會解決實際問題的一般步驟及盈虧中的關系。
重點探索并掌握列一元一次方程解決實際問題的方法,
教學。
難點找出已知量與未知量之間的關系及相等關系。
教具資料準備教師準備:課件。
書、本。
教學過程自備。
補充集備。
補充。
探究銷售中的盈虧問題:
1、商品原價200元,九折出售,賣價是元。
2、商品進價是30元,售價是50元,則利潤。
是元。
2、某商品原來每件零售價是a元,現(xiàn)在每件降價10%,降價后每件零售價是元。
3、某種品牌的彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應為元。
4、某商品按定價的八折出售,售價是14.8元,則原定售價是。
(學生總結公式)。
熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價進價之間聯(lián)系。
分析:售價=進價+利潤。
售價=(1+利潤率)×進價。
(3)某商場把進價為1980元的商品按標價的八折出售,仍獲利10%,則該商品的標價為元。
注:標價×n/10=進(1+率)。
則這種藥品在2005年漲價前價格為元。
通過本節(jié)課的學習你有哪些收獲?你還有哪些疑惑?
虧損還是盈利對比售價與進價的關系才能加以判斷。
小組研究解決提出質(zhì)疑。
優(yōu)生展示講解質(zhì)疑。
板書設計一元一次方程的應用-----盈虧問題。
相關的關系式:例題。
課后反思售價、進價、利潤、利潤率、標價、折扣數(shù)這幾個量之間的關系一定清楚,之后才能靈活運用,通過變式練習加強記憶提高能力。
人教版初中完全平方公式教案篇三
完全平方公式是初中代數(shù)的一個重要組成部分,是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。
本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎,環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。
多數(shù)學生的抽象思維能力、邏輯思維能力、數(shù)學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發(fā)展學生的合情推理能力、合作交流能力和數(shù)學化能力。
知識與技能。
利用添括號法則靈活應用乘法公式。
過程與方法。
利用去括號法則得到添括號法則,培養(yǎng)學生的逆向思維能力。
情感態(tài)度與價值觀。
鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的習慣,提高學生的合作交流意識和創(chuàng)新精神。
教學重點。
理解添括號法則,進一步熟悉乘法公式的合理利用。
教學難點。
在多項式與多項式的乘法中適當添括號達到應用公式的目的。
思考分析、歸納總結、練習、應用拓展等環(huán)節(jié)。
師生活動。
設計意圖。
一.提出問題,創(chuàng)設情境。
請同學們完成下列運算并回憶去括號法則.。
(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括號法則:
也就是說,遇“加”不變,遇“減”都變.。
二、探究新知。
把上述四個等式的左右兩邊反過來,又會得到什么結果呢?
(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)。
(3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)。
左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?
(學生分組討論,最后總結)。
添括號法則是:
也是:遇“加”不變,遇“減”都變.。
請同學們利用添括號法則完成下列練習:
1.在等號右邊的括號內(nèi)填上適當?shù)捻棧?BR> (1)a+b-c=a+()(2)a-b+c=a-()。
(3)a-b-c=a-()(4)a+b+c=a-()。
判斷下列運算是否正確.。
(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)。
(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)。
三、新知運用。
例:運用乘法公式計算。
(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2。
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)。
四.隨堂練習:
1.課本p111練習。
2.《學案》101頁——鞏固訓練。
五、課堂小結:
通過本節(jié)課的學習,你有何收獲和體會?
六、檢測作業(yè)。
習題14.2:必做題:3、4、5題。
選做題:7題。
知識梳理,教學導入,激發(fā)學生的學習熱情。
交流合作,探究新知,以問題驅(qū)動,層層深入。
歸納總結,提升課堂效果。
作業(yè)檢測,檢測目標的達成情況。
人教版初中完全平方公式教案篇四
重點、難點根據(jù)公式的特征及問題的特征選擇適當?shù)墓接嬎?
教學過程。
一、議一議。
1.邊長為(a+b)的正方形面積是多少?
2.邊長分別為a、b拍的兩個正方形面積和是多少?
3.你能比較(1)(2)的結果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.
二、做一做。
例1.利用完全平方式計算1.102。
三、試一試。
計算:。
1.(a+b+c)。
2.(a+b)師生共同分析:對于1要把多項式完全平方轉(zhuǎn)化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。
四、隨堂練習。
p381。
五、小結。
本節(jié)課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當?shù)墓接嬎?3.用加法結合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉(zhuǎn)化為二項式的完全平方.
六、作業(yè)。
課本習題1.14p381、2、3.
七、教后反思。
1.9整式的除法第一課時單項式除以單項式教學目標1.經(jīng)歷探索單項式除法的法則過程,了解單項式除法的意義.
2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.
將本文的word文檔下載到電腦,方便收藏和打印。
人教版初中完全平方公式教案篇五
教學目標:
1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。
2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
4、在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內(nèi)在美。
教學重點:
1、弄清完全平方公式的來源及其結構特點,用自己的.語言說明公式及其特點;
教學難點:
教學方法:
探索討論、歸納總結。
教學過程:
一、回顧與思考。
活動內(nèi)容:復習已學過的平方差公式。
1、平方差公式:(a+b)(a―b)=a2―b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。
右邊是兩數(shù)的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入。
活動內(nèi)容:提出問題:
一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。
用不同的形式表示實驗田的總面積,并進行比較。
活動內(nèi)容:
1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a―b)2=a2―2ab+b2。
2、引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數(shù)和(差))的平方;
右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
1、下列各式中哪些可以運用完全平方公式計算。
一、學習目標。
1、會推導完全平方公式,并能運用公式進行簡單的計算。
二、學習重點:會用完全平方公式進行運算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計。
(一)預習準備。
(1)預習書p23―26。
(2)思考:和的平方等于平方的和嗎?
1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。
2、已知(a+b)2=24,(a―b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=―6,xy=1,求代數(shù)式(x+2)―(3xy―y)的值。
1、(5―x2)2等于;
答案:25―10x2+x4。
解析:解答:(5―x2)2=25―10x2+x4。
2、(x―2y)2等于;
答案:x2―8xy+4y2。
解析:解答:(x―2y)2=x2―8xy+4y2。
3、(3a―4b)2等于;
答案:9a2―24ab+16b2。
解析:解答:(3a―4b)2=9a2―24ab+16b2。
人教版初中完全平方公式教案篇六
探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab).師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉(zhuǎn)化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy.另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得=xy.學生動筆:寫出(2)(3)題的結果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
p401學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。
本節(jié)課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:
1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;
2.符號問題;
人教版初中完全平方公式教案篇七
學生的知識技能基礎:學生通過對本章前幾節(jié)課的學習,已經(jīng)學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節(jié)課的學習奠定了基礎。
學生活動經(jīng)驗基礎:在平方差公式一節(jié)的學習中,學生已經(jīng)經(jīng)歷了探索和應用的過程,獲得了一些數(shù)學活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經(jīng)歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力。
教科書在學生已經(jīng)學習了整式的加法、乘法,以及平方差公式的基礎上,提出了本課的具體學習任務:經(jīng)歷探索完全平方公式的過程,并能運用公式進行簡單的計算。但這僅僅是這堂課外顯的具體教學目標,或者說是一個近期目標。整式是初中數(shù)學研究范圍內(nèi)的一塊重要內(nèi)容,整式的運算又是整式中的一大主干,乘法公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結。同時,乘法公式的推導是初中數(shù)學中運用推理方法進行代數(shù)式恒等變形的開端,通過乘法公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處。而且乘法公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的作用。為此,本節(jié)課的教學目標是:
1.經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。
2.體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的。層次上理解完全平方公式,并會運用公式進行簡單的計算。
3.了解完全平方公式的幾何背景,培養(yǎng)學生的數(shù)形結合意識。
4.在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內(nèi)在美。
本節(jié)課設計了七個教學環(huán)節(jié):回顧與思考、情境引入、初識完全平方公式、再識完全平方公式、又識完全平方公式、課堂小結、布置作業(yè)。
第一環(huán)節(jié)回顧與思考。
活動內(nèi)容:復習已學過的平方差公式。
1.平方差公式:(a+b)(a-b)=a-b;公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。右邊是兩數(shù)的平方差。
2.應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
活動目的:本堂課的學習方向仍是引導鼓勵學生通過已學習的知識經(jīng)過個人思考、小1組合作等方式推導出本課新知,進一步發(fā)展學生的符號感和推理能力。而這個過程離不開舊知識的鋪墊,平方差公式的學習有很多教學環(huán)節(jié)和形式與本節(jié)的學習是類似的,其中包含的基本知識與基本能力也仍是本節(jié)的精神主旨,因而復習很有必要。
實際教學效果:在復習過程中,學生能夠順利地回答出平方差公式的內(nèi)容,而對于其結構特點及應用時的注意事項,通過學生之間的相互補充,絕大多數(shù)學生也得以掌握。在復習中既把舊知識得以復習,同時學生也會主動的去回顧平方差公式一節(jié)的學習過程,從而為本節(jié)課的類比學習奠定了基礎。
第二環(huán)節(jié)情境引入。
活動內(nèi)容:出示幻燈片,提出問題。
一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。
用不同的形式表示實驗田的總面積,并進行比較。
活動目的:數(shù)學源自于生活,通過生活當中的一個實際問題,引入本節(jié)課的學習。從而在學生運用舊知計算和比較實驗田的面積當中引出完全平方公式。由于實驗田的總面積有多種表示方式,通過對比這些表示方式可以使學生對于公式有一個直觀的認識。同時在古代人們也是通過類似的圖形認識了這個公式。在列代數(shù)式解決問題的過程當中,通過自主探究和交流學到了新的知識,學生的學習積極性和主動性得到大大的激發(fā)。
實際教學效果:問題提出后,學生能夠主動地去尋找解決問題的方法。同時問題要求用不同的形式來表示總面積,這就要求學生從不同的角度來進行考慮,從而對于學生的思維提出了挑戰(zhàn)。不過由于前面列代數(shù)式一部分內(nèi)容的學習,絕大多數(shù)學生能夠很順利地想到兩種不同的方法,并從中建立了數(shù)形結合的意識。從而在學生的自主探索過程中引出了完全平方公式,使學生有了一個直觀認識。在整個過程中老師只是在提出問題和引導學生解決問題,學生的自主性得到了充分的體現(xiàn),課堂氣氛平等融洽。
活動內(nèi)容:1.通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a-b)2=a2-2ab+b2.2.引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。
3.分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數(shù)和(差))的平方;
右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
活動目的:第一個活動是讓學生在上面討論的基礎上,從代數(shù)運算的角度運用多項式的乘法法則,推導出兩數(shù)和的完全平方公式,并且進一步推導出兩數(shù)差的完全平方公式。在教學中學生有條理的思考和語言表達能力得以培養(yǎng)。
第二個活動使學生再次從幾何的角度來驗證兩數(shù)差的完全平方公式。從而學生經(jīng)歷了幾何解釋到代數(shù)運算,再到幾何解釋的過程,學生的數(shù)形結合意識得以培養(yǎng),并且從不同的角度推導出了公式,并且加以鞏固。
第三個活動在前面的基礎上,加以總結,使得學生從形式上初步地認識了完全平方公式。實際教學效果:此環(huán)節(jié)的設計符合學生的認知水平和認知過程。在第一個活動的教學中2應重視學生對于算理的理解,讓學生嘗試說出每一步運算的道理,有意識地培養(yǎng)他們有條理的思考和語言表達能力。在第二個活動中既是對于第二環(huán)節(jié)用幾何解釋驗證兩數(shù)和的完全平方公式的鞏固,同時也是對于學生數(shù)形結合意識的一種培養(yǎng),絕大多數(shù)學生能夠通過交流合作得以掌握。通過幾個活動學生能夠初步地掌握了完全平方公式,并在推導過程中培養(yǎng)了數(shù)學的基本能力。
(1)(2x3)2;
(2)(4x+5y)2;。
(3)(mna)22.總結口訣:首平方,尾平方,兩倍乘積放中央。
3.鞏固練習。
(1)計算:
11(2y)。
2;(2xyx)2。
;(n+1)2-n2。
;(4x+0.5)2。
;(2x2-3y2)225(2)糾錯練習:指出下列各式中的錯誤,并加以改正:
(1)(2a1)2=2a22a+1;。
(2)(2a+1)2=4a2+1;
(3)(a1)2=a22a1.活動目的:應用完全平方公式進行簡單的計算。同時例1三個題目的設計上有一定的梯度,從而總結出進行簡單計算的一般口訣,并加以鞏固落實。
實際教學效果:對照公式,進行獨立的簡單計算,體會公式在解題中的應用,進一步熟悉公式。并通過小組交流,自我檢驗,鞏固反饋。考察個人的實際運用能力,并及時查漏補缺。在此基礎上由教師總結出口訣,幫助學生進一步認識完全平方公式,并加以鞏固練習。
22(1)(-1-2x);(2)(-2x+1)。
2.進一步完善口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減?;顒幽康模豪?是對課本內(nèi)容的補充,從而使得學生從更深的一個角度來認識完全平方公式,防止解題時中間項的符號出現(xiàn)問題,并能在解題中通過靈活的變形來運用公式,解決問題。并對上面總結的口訣進行進一步的完善。
實際教學效果:首先放手讓學生獨立來解決第一個題目,學生出錯較多,且都集中在中間項的符號上,由此引出有進一步認識公式的必要,從而教師引導學生再次觀察題目,仔細分析題目當中誰相當于公式當中的a與b,從而運用不同的方法和思路,解決問題。在活動中學生認識到了解決問題之前恰當選擇公式和正確分析題目的必要性,學習的積極性再次被激發(fā),在此基礎上教師把上面總結的口訣再次完善,幫助學生突破難點,教師的主導作用得以體現(xiàn)。
第六環(huán)節(jié)課堂小結。
活動內(nèi)容:1.完全平方公式和平方差公式不同:
形式不同.。
3不弄錯符號、2ab時不少乘2。
3.口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
活動目的:課堂小結并不只是課堂知識點的回顧,要盡量讓學生暢談自己的切身感受,教師對于發(fā)言進行鼓勵,進一步梳理本節(jié)所學,更要有所思考,達到對所學知識鞏固的目的。
實際教學效果:學生暢所欲言自己的實際收獲,達到了本節(jié)課的教學目標。
第七環(huán)節(jié)布置作業(yè)。
1.基礎訓練:教材習題1.13。
1.本節(jié)課學生的探究活動比較多,教師既要全局把握,又要順其自然,千萬不可拔苗助長,為了后面多做幾道練習而人為的主觀裁斷時間安排,其實公式的探究活動本身既是對學生能力的培養(yǎng),又是對公式的識記過程,而且還可以提高他們的應用公式的本領。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學生都有事情做且樂此不疲,更加充分的參與其中。對于這一點,教師一定要轉(zhuǎn)變觀念。
2.在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學生只是側重觀察某個單獨的式子,把它孤立地看,而不知道將幾個式子聯(lián)系地看;有些學生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強的觀察力。教師要善于抓住這個契機,適當對學生進行學法指導,培養(yǎng)他們“既見樹木,又見森林”的優(yōu)良觀察品質(zhì)。
3.對于公式使用的條件既要把握好“度”,又要把握好“方向”。對于公式中的字母取值范圍,不必過分強調(diào)(實際上,這個范圍限定的太小了);而對于公式的特點,則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提,卻往往不被重視,結果造成幾個類似公式的混淆,給正確解題設置了障礙。
4.教無定法,教師應根據(jù)本班的實際情況靈活安排教學步驟,切實把關注學生的發(fā)展放在首位來考慮,并依此制定合理而科學的教學計劃。如,對于較好的班級,則可以優(yōu)先發(fā)展,采取居高臨下的教學思路,先整體把握再對比擊破,或是將其納入整體結構系統(tǒng),采取類比的學習方式;而對于基礎較薄弱的班級,則應以提高學習興趣、教會學習、培養(yǎng)成功體驗為主,千萬不可拔苗助長,以防物極必反。
人教版初中完全平方公式教案篇八
本節(jié)課屬于人教版八年級數(shù)學上冊第十五章《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學習習近平方差公式,這一課主要研究完全平方公式的特征及應用。教學關鍵是引導學生正確理解完全平方公式的推導過程,幾何背景,并能準確應用完全平方公式解決相關問題。教學后我進行反思如下:本課的知識要點是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應公式進行簡單的計算,教學已基本達到了預期目標,能突出重點,兼顧難點。本節(jié)課上學生體會了數(shù)形結合及轉(zhuǎn)化的數(shù)學思想,并知道猜想的結論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學生容易得到一些結論但在老師的.引導下又使問題的探討得以不斷深入,學生思考積極、氣氛活躍,教學效果較好。采用以小組自主探究的學習方式,同時各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進行。學生非?;钴S。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學生的圖形觀,利用拼圖的方法,使學生在動手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強調(diào)數(shù)值的計算,使學生掌握公式的計算技巧。從而突出以學生為主體的探索性學習原則。讓學生自編符合完全平方公式和平方差公式結構的計算題,從而有效地將兩類公式區(qū)分開,深刻認識公式的結構特征,并大大激發(fā)了學生的學習積極性。
同時課后感覺應該引導學生用文字概括公式的內(nèi)容,從而培養(yǎng)學生抽象的數(shù)學思維能力和語言表達能力。對需要幫助的學生進行針對性的個別指導較少。對于學生計算中存在的問題應讓學生自己糾錯,教師不應全權代勞。如利用兩數(shù)和的公式計算(a+b)2環(huán)節(jié),兩位學生分別講述自己的想法之后,教師應該讓全體學生根據(jù)其方法進行計算,自主驗證,即使有些學生寫不出來,也會因為經(jīng)過思考而印象深刻,如果為了節(jié)省時間教師自己代勞,那樣就不能夠充分體現(xiàn)學生的主體作用,而且效果也較前者差些。
在今后的教學中應注意從以下幾個方面改進:1、在教學中要講法則、公式的應用,也要講公式的推導,使學生在理解公式,法則道理的基礎上進行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明。
人教版初中完全平方公式教案篇九
1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。
2、掌握運用完全平方公式分解因式的'方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。
對比發(fā)現(xiàn)法課型新授課教具投影儀。
學生活動。
(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2。
a2-8a+16=a2-2×4a+42=(a-4)2。
(要強調(diào)注意符號)。
首先我們來試一試:(投影:牛刀小試)。
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1。
(3)(m+n)2-4(m+n)+4。
(教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)。
2.把81x4-72x2y2+16y4分解因式。
(本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)。
將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。
第88頁練一練第1、2題。
人教版初中完全平方公式教案篇十
1.弄清完全平方公式的來源及其結構特點,能用自己的。語言說明公式及其特點;
2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。
用不同的形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續(xù)做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
1.下列各式中哪些可以運用完全平方公式計算_______________。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)_____________;(2);。
1.求的值,其中。
2.若。
對公式的真正理解有待加強。
人教版初中完全平方公式教案篇十一
1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。
2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
3、了解完全平方公式的幾何背景,培養(yǎng)學生的數(shù)形結合意識。
4、在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內(nèi)在美。
1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;
探索討論、歸納總結。
一、回顧與思考。
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。
右邊是兩數(shù)的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入。
活動內(nèi)容:提出問題:
用不同的形式表示實驗田的總面積,并進行比較。
活動內(nèi)容:
1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數(shù)和(差))的平方;
右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
一、學習目標。
1、會推導完全平方公式,并能運用公式進行簡單的計算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計。
(一)預習準備。
(1)預習書p23—26。
(2)思考:和的平方等于平方的和嗎?
1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。
1、(5—x2)2等于;
答案:25—10x2+x4。
解析:解答:(5—x2)2=25—10x2+x4。
2、(x—2y)2等于;
答案:x2—8xy+4y2。
解析:解答:(x—2y)2=x2—8xy+4y2。
3、(3a—4b)2等于;
答案:9a2—24ab+16b2。
解析:解答:(3a—4b)2=9a2—24ab+16b2。
人教版初中完全平方公式教案篇十二
教學目標:
1.經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學生的符號感和推理能力;。
1.弄清完全平方公式的來源及其結構特點,能用自己的語言說明公式及其特點;。
2.會用完全平方公式進行運算.教學難點:會用完全平方公式進行運算教學過程:
一、探索練習:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(圖略)。
用不同的形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續(xù)做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來.
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
二、鞏固練習:
1.下列各式中哪些可以運用完全平方公式計算_______________。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)_____________;(2);。
(3);三、提高練習:
1.求的值,其中。
2.若。
對公式的真正理解有待加強.
人教版初中完全平方公式教案篇一
1.弄清完全平方公式的來源及其結構特點,能用自己的。語言說明公式及其特點;
2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。
用不同的`形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續(xù)做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)xxxxxxxxx_;(2);。
1.求的值,其中。
2.若。
對公式的真正理解有待加強。
人教版初中完全平方公式教案篇二
3.4探究實際問題與一元一次方程組。
掌握一元一次方程得解法,了解銷售中的數(shù)量關系。
能夠分析實際問題中的數(shù)量關系,找相等關系,列出一元一次方程。
基本思想。
基本活動經(jīng)驗體會解決實際問題的一般步驟及盈虧中的關系。
重點探索并掌握列一元一次方程解決實際問題的方法,
教學。
難點找出已知量與未知量之間的關系及相等關系。
教具資料準備教師準備:課件。
書、本。
教學過程自備。
補充集備。
補充。
探究銷售中的盈虧問題:
1、商品原價200元,九折出售,賣價是元。
2、商品進價是30元,售價是50元,則利潤。
是元。
2、某商品原來每件零售價是a元,現(xiàn)在每件降價10%,降價后每件零售價是元。
3、某種品牌的彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應為元。
4、某商品按定價的八折出售,售價是14.8元,則原定售價是。
(學生總結公式)。
熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價進價之間聯(lián)系。
分析:售價=進價+利潤。
售價=(1+利潤率)×進價。
(3)某商場把進價為1980元的商品按標價的八折出售,仍獲利10%,則該商品的標價為元。
注:標價×n/10=進(1+率)。
則這種藥品在2005年漲價前價格為元。
通過本節(jié)課的學習你有哪些收獲?你還有哪些疑惑?
虧損還是盈利對比售價與進價的關系才能加以判斷。
小組研究解決提出質(zhì)疑。
優(yōu)生展示講解質(zhì)疑。
板書設計一元一次方程的應用-----盈虧問題。
相關的關系式:例題。
課后反思售價、進價、利潤、利潤率、標價、折扣數(shù)這幾個量之間的關系一定清楚,之后才能靈活運用,通過變式練習加強記憶提高能力。
人教版初中完全平方公式教案篇三
完全平方公式是初中代數(shù)的一個重要組成部分,是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。
本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎,環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。
多數(shù)學生的抽象思維能力、邏輯思維能力、數(shù)學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發(fā)展學生的合情推理能力、合作交流能力和數(shù)學化能力。
知識與技能。
利用添括號法則靈活應用乘法公式。
過程與方法。
利用去括號法則得到添括號法則,培養(yǎng)學生的逆向思維能力。
情感態(tài)度與價值觀。
鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的習慣,提高學生的合作交流意識和創(chuàng)新精神。
教學重點。
理解添括號法則,進一步熟悉乘法公式的合理利用。
教學難點。
在多項式與多項式的乘法中適當添括號達到應用公式的目的。
思考分析、歸納總結、練習、應用拓展等環(huán)節(jié)。
師生活動。
設計意圖。
一.提出問題,創(chuàng)設情境。
請同學們完成下列運算并回憶去括號法則.。
(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括號法則:
也就是說,遇“加”不變,遇“減”都變.。
二、探究新知。
把上述四個等式的左右兩邊反過來,又會得到什么結果呢?
(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)。
(3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)。
左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?
(學生分組討論,最后總結)。
添括號法則是:
也是:遇“加”不變,遇“減”都變.。
請同學們利用添括號法則完成下列練習:
1.在等號右邊的括號內(nèi)填上適當?shù)捻棧?BR> (1)a+b-c=a+()(2)a-b+c=a-()。
(3)a-b-c=a-()(4)a+b+c=a-()。
判斷下列運算是否正確.。
(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)。
(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)。
三、新知運用。
例:運用乘法公式計算。
(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2。
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)。
四.隨堂練習:
1.課本p111練習。
2.《學案》101頁——鞏固訓練。
五、課堂小結:
通過本節(jié)課的學習,你有何收獲和體會?
六、檢測作業(yè)。
習題14.2:必做題:3、4、5題。
選做題:7題。
知識梳理,教學導入,激發(fā)學生的學習熱情。
交流合作,探究新知,以問題驅(qū)動,層層深入。
歸納總結,提升課堂效果。
作業(yè)檢測,檢測目標的達成情況。
人教版初中完全平方公式教案篇四
重點、難點根據(jù)公式的特征及問題的特征選擇適當?shù)墓接嬎?
教學過程。
一、議一議。
1.邊長為(a+b)的正方形面積是多少?
2.邊長分別為a、b拍的兩個正方形面積和是多少?
3.你能比較(1)(2)的結果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.
二、做一做。
例1.利用完全平方式計算1.102。
三、試一試。
計算:。
1.(a+b+c)。
2.(a+b)師生共同分析:對于1要把多項式完全平方轉(zhuǎn)化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。
四、隨堂練習。
p381。
五、小結。
本節(jié)課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當?shù)墓接嬎?3.用加法結合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉(zhuǎn)化為二項式的完全平方.
六、作業(yè)。
課本習題1.14p381、2、3.
七、教后反思。
1.9整式的除法第一課時單項式除以單項式教學目標1.經(jīng)歷探索單項式除法的法則過程,了解單項式除法的意義.
2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.
將本文的word文檔下載到電腦,方便收藏和打印。
人教版初中完全平方公式教案篇五
教學目標:
1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。
2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
4、在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內(nèi)在美。
教學重點:
1、弄清完全平方公式的來源及其結構特點,用自己的.語言說明公式及其特點;
教學難點:
教學方法:
探索討論、歸納總結。
教學過程:
一、回顧與思考。
活動內(nèi)容:復習已學過的平方差公式。
1、平方差公式:(a+b)(a―b)=a2―b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。
右邊是兩數(shù)的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入。
活動內(nèi)容:提出問題:
一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。
用不同的形式表示實驗田的總面積,并進行比較。
活動內(nèi)容:
1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a―b)2=a2―2ab+b2。
2、引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數(shù)和(差))的平方;
右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
1、下列各式中哪些可以運用完全平方公式計算。
一、學習目標。
1、會推導完全平方公式,并能運用公式進行簡單的計算。
二、學習重點:會用完全平方公式進行運算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計。
(一)預習準備。
(1)預習書p23―26。
(2)思考:和的平方等于平方的和嗎?
1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。
2、已知(a+b)2=24,(a―b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=―6,xy=1,求代數(shù)式(x+2)―(3xy―y)的值。
1、(5―x2)2等于;
答案:25―10x2+x4。
解析:解答:(5―x2)2=25―10x2+x4。
2、(x―2y)2等于;
答案:x2―8xy+4y2。
解析:解答:(x―2y)2=x2―8xy+4y2。
3、(3a―4b)2等于;
答案:9a2―24ab+16b2。
解析:解答:(3a―4b)2=9a2―24ab+16b2。
人教版初中完全平方公式教案篇六
探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab).師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉(zhuǎn)化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy.另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得=xy.學生動筆:寫出(2)(3)題的結果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
p401學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。
本節(jié)課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:
1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;
2.符號問題;
人教版初中完全平方公式教案篇七
學生的知識技能基礎:學生通過對本章前幾節(jié)課的學習,已經(jīng)學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節(jié)課的學習奠定了基礎。
學生活動經(jīng)驗基礎:在平方差公式一節(jié)的學習中,學生已經(jīng)經(jīng)歷了探索和應用的過程,獲得了一些數(shù)學活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經(jīng)歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力。
教科書在學生已經(jīng)學習了整式的加法、乘法,以及平方差公式的基礎上,提出了本課的具體學習任務:經(jīng)歷探索完全平方公式的過程,并能運用公式進行簡單的計算。但這僅僅是這堂課外顯的具體教學目標,或者說是一個近期目標。整式是初中數(shù)學研究范圍內(nèi)的一塊重要內(nèi)容,整式的運算又是整式中的一大主干,乘法公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結。同時,乘法公式的推導是初中數(shù)學中運用推理方法進行代數(shù)式恒等變形的開端,通過乘法公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處。而且乘法公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的作用。為此,本節(jié)課的教學目標是:
1.經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。
2.體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的。層次上理解完全平方公式,并會運用公式進行簡單的計算。
3.了解完全平方公式的幾何背景,培養(yǎng)學生的數(shù)形結合意識。
4.在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內(nèi)在美。
本節(jié)課設計了七個教學環(huán)節(jié):回顧與思考、情境引入、初識完全平方公式、再識完全平方公式、又識完全平方公式、課堂小結、布置作業(yè)。
第一環(huán)節(jié)回顧與思考。
活動內(nèi)容:復習已學過的平方差公式。
1.平方差公式:(a+b)(a-b)=a-b;公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。右邊是兩數(shù)的平方差。
2.應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
活動目的:本堂課的學習方向仍是引導鼓勵學生通過已學習的知識經(jīng)過個人思考、小1組合作等方式推導出本課新知,進一步發(fā)展學生的符號感和推理能力。而這個過程離不開舊知識的鋪墊,平方差公式的學習有很多教學環(huán)節(jié)和形式與本節(jié)的學習是類似的,其中包含的基本知識與基本能力也仍是本節(jié)的精神主旨,因而復習很有必要。
實際教學效果:在復習過程中,學生能夠順利地回答出平方差公式的內(nèi)容,而對于其結構特點及應用時的注意事項,通過學生之間的相互補充,絕大多數(shù)學生也得以掌握。在復習中既把舊知識得以復習,同時學生也會主動的去回顧平方差公式一節(jié)的學習過程,從而為本節(jié)課的類比學習奠定了基礎。
第二環(huán)節(jié)情境引入。
活動內(nèi)容:出示幻燈片,提出問題。
一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。
用不同的形式表示實驗田的總面積,并進行比較。
活動目的:數(shù)學源自于生活,通過生活當中的一個實際問題,引入本節(jié)課的學習。從而在學生運用舊知計算和比較實驗田的面積當中引出完全平方公式。由于實驗田的總面積有多種表示方式,通過對比這些表示方式可以使學生對于公式有一個直觀的認識。同時在古代人們也是通過類似的圖形認識了這個公式。在列代數(shù)式解決問題的過程當中,通過自主探究和交流學到了新的知識,學生的學習積極性和主動性得到大大的激發(fā)。
實際教學效果:問題提出后,學生能夠主動地去尋找解決問題的方法。同時問題要求用不同的形式來表示總面積,這就要求學生從不同的角度來進行考慮,從而對于學生的思維提出了挑戰(zhàn)。不過由于前面列代數(shù)式一部分內(nèi)容的學習,絕大多數(shù)學生能夠很順利地想到兩種不同的方法,并從中建立了數(shù)形結合的意識。從而在學生的自主探索過程中引出了完全平方公式,使學生有了一個直觀認識。在整個過程中老師只是在提出問題和引導學生解決問題,學生的自主性得到了充分的體現(xiàn),課堂氣氛平等融洽。
活動內(nèi)容:1.通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a-b)2=a2-2ab+b2.2.引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。
3.分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數(shù)和(差))的平方;
右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
活動目的:第一個活動是讓學生在上面討論的基礎上,從代數(shù)運算的角度運用多項式的乘法法則,推導出兩數(shù)和的完全平方公式,并且進一步推導出兩數(shù)差的完全平方公式。在教學中學生有條理的思考和語言表達能力得以培養(yǎng)。
第二個活動使學生再次從幾何的角度來驗證兩數(shù)差的完全平方公式。從而學生經(jīng)歷了幾何解釋到代數(shù)運算,再到幾何解釋的過程,學生的數(shù)形結合意識得以培養(yǎng),并且從不同的角度推導出了公式,并且加以鞏固。
第三個活動在前面的基礎上,加以總結,使得學生從形式上初步地認識了完全平方公式。實際教學效果:此環(huán)節(jié)的設計符合學生的認知水平和認知過程。在第一個活動的教學中2應重視學生對于算理的理解,讓學生嘗試說出每一步運算的道理,有意識地培養(yǎng)他們有條理的思考和語言表達能力。在第二個活動中既是對于第二環(huán)節(jié)用幾何解釋驗證兩數(shù)和的完全平方公式的鞏固,同時也是對于學生數(shù)形結合意識的一種培養(yǎng),絕大多數(shù)學生能夠通過交流合作得以掌握。通過幾個活動學生能夠初步地掌握了完全平方公式,并在推導過程中培養(yǎng)了數(shù)學的基本能力。
(1)(2x3)2;
(2)(4x+5y)2;。
(3)(mna)22.總結口訣:首平方,尾平方,兩倍乘積放中央。
3.鞏固練習。
(1)計算:
11(2y)。
2;(2xyx)2。
;(n+1)2-n2。
;(4x+0.5)2。
;(2x2-3y2)225(2)糾錯練習:指出下列各式中的錯誤,并加以改正:
(1)(2a1)2=2a22a+1;。
(2)(2a+1)2=4a2+1;
(3)(a1)2=a22a1.活動目的:應用完全平方公式進行簡單的計算。同時例1三個題目的設計上有一定的梯度,從而總結出進行簡單計算的一般口訣,并加以鞏固落實。
實際教學效果:對照公式,進行獨立的簡單計算,體會公式在解題中的應用,進一步熟悉公式。并通過小組交流,自我檢驗,鞏固反饋。考察個人的實際運用能力,并及時查漏補缺。在此基礎上由教師總結出口訣,幫助學生進一步認識完全平方公式,并加以鞏固練習。
22(1)(-1-2x);(2)(-2x+1)。
2.進一步完善口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減?;顒幽康模豪?是對課本內(nèi)容的補充,從而使得學生從更深的一個角度來認識完全平方公式,防止解題時中間項的符號出現(xiàn)問題,并能在解題中通過靈活的變形來運用公式,解決問題。并對上面總結的口訣進行進一步的完善。
實際教學效果:首先放手讓學生獨立來解決第一個題目,學生出錯較多,且都集中在中間項的符號上,由此引出有進一步認識公式的必要,從而教師引導學生再次觀察題目,仔細分析題目當中誰相當于公式當中的a與b,從而運用不同的方法和思路,解決問題。在活動中學生認識到了解決問題之前恰當選擇公式和正確分析題目的必要性,學習的積極性再次被激發(fā),在此基礎上教師把上面總結的口訣再次完善,幫助學生突破難點,教師的主導作用得以體現(xiàn)。
第六環(huán)節(jié)課堂小結。
活動內(nèi)容:1.完全平方公式和平方差公式不同:
形式不同.。
3不弄錯符號、2ab時不少乘2。
3.口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
活動目的:課堂小結并不只是課堂知識點的回顧,要盡量讓學生暢談自己的切身感受,教師對于發(fā)言進行鼓勵,進一步梳理本節(jié)所學,更要有所思考,達到對所學知識鞏固的目的。
實際教學效果:學生暢所欲言自己的實際收獲,達到了本節(jié)課的教學目標。
第七環(huán)節(jié)布置作業(yè)。
1.基礎訓練:教材習題1.13。
1.本節(jié)課學生的探究活動比較多,教師既要全局把握,又要順其自然,千萬不可拔苗助長,為了后面多做幾道練習而人為的主觀裁斷時間安排,其實公式的探究活動本身既是對學生能力的培養(yǎng),又是對公式的識記過程,而且還可以提高他們的應用公式的本領。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學生都有事情做且樂此不疲,更加充分的參與其中。對于這一點,教師一定要轉(zhuǎn)變觀念。
2.在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學生只是側重觀察某個單獨的式子,把它孤立地看,而不知道將幾個式子聯(lián)系地看;有些學生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強的觀察力。教師要善于抓住這個契機,適當對學生進行學法指導,培養(yǎng)他們“既見樹木,又見森林”的優(yōu)良觀察品質(zhì)。
3.對于公式使用的條件既要把握好“度”,又要把握好“方向”。對于公式中的字母取值范圍,不必過分強調(diào)(實際上,這個范圍限定的太小了);而對于公式的特點,則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提,卻往往不被重視,結果造成幾個類似公式的混淆,給正確解題設置了障礙。
4.教無定法,教師應根據(jù)本班的實際情況靈活安排教學步驟,切實把關注學生的發(fā)展放在首位來考慮,并依此制定合理而科學的教學計劃。如,對于較好的班級,則可以優(yōu)先發(fā)展,采取居高臨下的教學思路,先整體把握再對比擊破,或是將其納入整體結構系統(tǒng),采取類比的學習方式;而對于基礎較薄弱的班級,則應以提高學習興趣、教會學習、培養(yǎng)成功體驗為主,千萬不可拔苗助長,以防物極必反。
人教版初中完全平方公式教案篇八
本節(jié)課屬于人教版八年級數(shù)學上冊第十五章《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學習習近平方差公式,這一課主要研究完全平方公式的特征及應用。教學關鍵是引導學生正確理解完全平方公式的推導過程,幾何背景,并能準確應用完全平方公式解決相關問題。教學后我進行反思如下:本課的知識要點是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應公式進行簡單的計算,教學已基本達到了預期目標,能突出重點,兼顧難點。本節(jié)課上學生體會了數(shù)形結合及轉(zhuǎn)化的數(shù)學思想,并知道猜想的結論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學生容易得到一些結論但在老師的.引導下又使問題的探討得以不斷深入,學生思考積極、氣氛活躍,教學效果較好。采用以小組自主探究的學習方式,同時各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進行。學生非?;钴S。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學生的圖形觀,利用拼圖的方法,使學生在動手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強調(diào)數(shù)值的計算,使學生掌握公式的計算技巧。從而突出以學生為主體的探索性學習原則。讓學生自編符合完全平方公式和平方差公式結構的計算題,從而有效地將兩類公式區(qū)分開,深刻認識公式的結構特征,并大大激發(fā)了學生的學習積極性。
同時課后感覺應該引導學生用文字概括公式的內(nèi)容,從而培養(yǎng)學生抽象的數(shù)學思維能力和語言表達能力。對需要幫助的學生進行針對性的個別指導較少。對于學生計算中存在的問題應讓學生自己糾錯,教師不應全權代勞。如利用兩數(shù)和的公式計算(a+b)2環(huán)節(jié),兩位學生分別講述自己的想法之后,教師應該讓全體學生根據(jù)其方法進行計算,自主驗證,即使有些學生寫不出來,也會因為經(jīng)過思考而印象深刻,如果為了節(jié)省時間教師自己代勞,那樣就不能夠充分體現(xiàn)學生的主體作用,而且效果也較前者差些。
在今后的教學中應注意從以下幾個方面改進:1、在教學中要講法則、公式的應用,也要講公式的推導,使學生在理解公式,法則道理的基礎上進行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明。
人教版初中完全平方公式教案篇九
1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。
2、掌握運用完全平方公式分解因式的'方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。
對比發(fā)現(xiàn)法課型新授課教具投影儀。
學生活動。
(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2。
a2-8a+16=a2-2×4a+42=(a-4)2。
(要強調(diào)注意符號)。
首先我們來試一試:(投影:牛刀小試)。
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1。
(3)(m+n)2-4(m+n)+4。
(教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)。
2.把81x4-72x2y2+16y4分解因式。
(本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)。
將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。
第88頁練一練第1、2題。
人教版初中完全平方公式教案篇十
1.弄清完全平方公式的來源及其結構特點,能用自己的。語言說明公式及其特點;
2.會用完全平方公式進行運算。教學難點:會用完全平方公式進行運算教學過程:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種。(圖略)。
用不同的形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續(xù)做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來。
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
1.下列各式中哪些可以運用完全平方公式計算_______________。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)_____________;(2);。
1.求的值,其中。
2.若。
對公式的真正理解有待加強。
人教版初中完全平方公式教案篇十一
1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。
2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
3、了解完全平方公式的幾何背景,培養(yǎng)學生的數(shù)形結合意識。
4、在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內(nèi)在美。
1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;
探索討論、歸納總結。
一、回顧與思考。
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。
右邊是兩數(shù)的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入。
活動內(nèi)容:提出問題:
用不同的形式表示實驗田的總面積,并進行比較。
活動內(nèi)容:
1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數(shù)和(差))的平方;
右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
一、學習目標。
1、會推導完全平方公式,并能運用公式進行簡單的計算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計。
(一)預習準備。
(1)預習書p23—26。
(2)思考:和的平方等于平方的和嗎?
1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。
1、(5—x2)2等于;
答案:25—10x2+x4。
解析:解答:(5—x2)2=25—10x2+x4。
2、(x—2y)2等于;
答案:x2—8xy+4y2。
解析:解答:(x—2y)2=x2—8xy+4y2。
3、(3a—4b)2等于;
答案:9a2—24ab+16b2。
解析:解答:(3a—4b)2=9a2—24ab+16b2。
人教版初中完全平方公式教案篇十二
教學目標:
1.經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學生的符號感和推理能力;。
1.弄清完全平方公式的來源及其結構特點,能用自己的語言說明公式及其特點;。
2.會用完全平方公式進行運算.教學難點:會用完全平方公式進行運算教學過程:
一、探索練習:
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(圖略)。
用不同的形式表示實驗田的總面積,并進行比較你發(fā)現(xiàn)了什么?
觀察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多項式乘法法則說明理由呢?
(2)(a-b)2等于什么?小穎寫出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能繼續(xù)做下去嗎?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教師在此時應該引導觀察完全平方公式的特點,并用自己的言語表達出來.
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
二、鞏固練習:
1.下列各式中哪些可以運用完全平方公式計算_______________。
(1);(2);。
(3);(4).
2.計算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)_____________;(2);。
(3);三、提高練習:
1.求的值,其中。
2.若。
對公式的真正理解有待加強.

