人教版初中完全平方公式教案(熱門14篇)

字號:

    教案的編寫是教師有效組織教學(xué)的重要手段和基礎(chǔ)。教案的編寫應(yīng)該注重教學(xué)方法的選擇和教學(xué)資源的合理運(yùn)用。以下是小編整理的一些編寫教案時(shí)的注意事項(xiàng),請大家一起來看看。
    人教版初中完全平方公式教案篇一
    重點(diǎn)、難點(diǎn)根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接?jì)算.
    教學(xué)過程。
    一、議一議。
    1.邊長為(a+b)的正方形面積是多少?
    2.邊長分別為a、b拍的兩個正方形面積和是多少?
    3.你能比較(1)(2)的結(jié)果嗎?說明你的理由.師生共同討論:學(xué)生回答(1)(a+b)(2)a+b(3)因?yàn)?a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.
    二、做一做。
    例1.利用完全平方式計(jì)算1.102。
    三、試一試。
    計(jì)算:。
    1.(a+b+c)。
    2.(a+b)師生共同分析:對于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學(xué)生動筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述。
    四、隨堂練習(xí)。
    p381。
    五、小結(jié)。
    本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運(yùn)算時(shí)注意以下幾點(diǎn).1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接?jì)算.3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項(xiàng)式的完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方.
    六、作業(yè)。
    課本習(xí)題1.14p381、2、3.
    七、教后反思。
    1.9整式的除法第一課時(shí)單項(xiàng)式除以單項(xiàng)式教學(xué)目標(biāo)1.經(jīng)歷探索單項(xiàng)式除法的法則過程,了解單項(xiàng)式除法的意義.
    2.理解單項(xiàng)式除法法則,會進(jìn)行單項(xiàng)式除以單項(xiàng)式運(yùn)算.重點(diǎn)、難點(diǎn)重點(diǎn):單項(xiàng)式除以單項(xiàng)式的運(yùn)算.難點(diǎn):單項(xiàng)式除以單項(xiàng)式法則的理解.
    將本文的word文檔下載到電腦,方便收藏和打印。
    人教版初中完全平方公式教案篇二
    1、經(jīng)歷探索完全平方公式的過程,發(fā)展學(xué)生觀察、交流、歸納、猜測、驗(yàn)證等能力。
    3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。
    會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。
    掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a、b的廣泛含義。
    一、學(xué)習(xí)準(zhǔn)備。
    1、利用多項(xiàng)式乘以多項(xiàng)式計(jì)算:(a+b)2(a—b)2。
    2、這兩個特殊形式的多項(xiàng)式乘法結(jié)果稱為完全平方公式。
    3、完全平方公式的。幾何意義:閱讀課本64頁,完成填空。
    (a+b)2=a2+2ab+b2。
    (a—b)2=a2—2ab+b2。
    左邊是形式,右邊有三項(xiàng),其中兩項(xiàng)是形式,另一項(xiàng)是()。
    www.。
    5、兩個完全平方公式的轉(zhuǎn)化:(a—b)2=2=()2+2()+()2=()。
    二、合作探究。
    1、利用乘法公式計(jì)算:
    (3a+2b)2(2)(—4x2—1)2。
    分析:要分清題目中哪個式子相當(dāng)于公式中的a,哪個式子相當(dāng)于公式中的b。
    2、利用乘法公式計(jì)算:
    992(2)()2。
    分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化()2,()2可以轉(zhuǎn)化為()2。
    (a+b+c)2(2)(a—b)3。
    三、學(xué)習(xí)。
    對照學(xué)習(xí)目標(biāo),通過預(yù)習(xí),你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?
    四、自我測試。
    1、下列計(jì)算是否正確,若不正確,請訂正;
    (1)(—1+3a)2=9a2—6a+1。
    (2)(3x2—)2=9x4—。
    (3)(xy+4)2=x2y2+16。
    (4)(a2b—2)2=a2b2—2a2b+4。
    2、利用乘法公式計(jì)算:
    (1)(3x+1)2。
    (2)(a—3b)2。
    (3)(—2x+)2。
    (4)(—3m—4n)2。
    3、利用乘法公式計(jì)算:
    9992。
    4、先化簡,再求值;
    (m—3n)2—(m+3n)2+2,其中m=2,n=3。
    五、思維拓展。
    2、多項(xiàng)式4x2+1加上一個單項(xiàng)式后,使它能成為一個整式的完全平方,那么加上的單項(xiàng)式可以是()。
    3、已知(x+y)2=9,(x—y)2=5,求xy的值。
    4、x+y=4,x—y=10,那么xy=()。
    5、已知x—=4,則x2+=()。
    人教版初中完全平方公式教案篇三
    本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時(shí)――完全平方公式。
    完全平方公式是乘法公式的重要組成部分,也是乘法運(yùn)算知識的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對多項(xiàng)式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運(yùn)算的必備知識,它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。
    本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對簡化某些代數(shù)式的運(yùn)算,培養(yǎng)學(xué)生的求簡意識很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。
    重點(diǎn):掌握完全平方公式,會運(yùn)用公式進(jìn)行簡單的計(jì)算。
    難點(diǎn):理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。
    (1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運(yùn)用公式進(jìn)行簡單計(jì)算。
    (2)進(jìn)一步發(fā)展學(xué)生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會獨(dú)立思考。
    (3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會與他人合作交流,體驗(yàn)解決問題的多樣性。
    (4)體驗(yàn)完全平方公式可以簡化運(yùn)算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過程中獲得體驗(yàn)成功的喜悅,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。
    學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運(yùn)算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強(qiáng)的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。
    學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨(dú)立思考、歸納總結(jié)、合作交流。
    總結(jié)反思中獲得數(shù)學(xué)知識與技能。
    教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動探究的學(xué)習(xí)狀態(tài)。
    在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評價(jià)學(xué)生在知識技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識為出發(fā)點(diǎn),自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨(dú)立思考為主,當(dāng)遇到困難時(shí)學(xué)會求助交流,教師也要給學(xué)生思考交流的時(shí)間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。
    在整個學(xué)習(xí)過程中,通過對學(xué)生參與自主探究的程度、合作交流的意識以及獨(dú)立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進(jìn)行評價(jià),并對學(xué)生的想法或結(jié)論給予鼓勵評價(jià)。
    人教版初中完全平方公式教案篇四
    (2)切勿把“乘積項(xiàng)”2ab中的2丟掉.
    今后在教學(xué)中?,要注意以下幾點(diǎn):
    1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征.
    2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.
    人教版初中完全平方公式教案篇五
    探索單項(xiàng)式除以單項(xiàng)式法則(出示投影1)計(jì)算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab).師生共同分析:此題是做除法運(yùn)算,可以從兩方面思考:根據(jù)除法是乘法的逆運(yùn)算,將除法問題轉(zhuǎn)化為乘法問題去解決,即()x=xy,由單項(xiàng)式乘以單項(xiàng)式法則可得(xy)x=xy,因此,xyx=xy.另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得=xy.學(xué)生動筆:寫出(2)(3)題的結(jié)果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運(yùn)算是單項(xiàng)式除以單項(xiàng)式的運(yùn)算,你能說說如何進(jìn)行單項(xiàng)式除以單項(xiàng)式的運(yùn)算?學(xué)生活動:小組討論,教師引導(dǎo)學(xué)生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學(xué)敘述,其余同學(xué)補(bǔ)充糾正。出示單項(xiàng)式除法法則(投影顯示)單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
    p401學(xué)生活動:讓四名同學(xué)到黑板板演,其余同學(xué)在練習(xí)本上計(jì)算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時(shí)更正。待四名板演同學(xué)完成后,師生共同訂正。
    本節(jié)課主要學(xué)習(xí)了單項(xiàng)式除以單項(xiàng)式的運(yùn)算。在運(yùn)用法則計(jì)算時(shí)應(yīng)注意以下幾點(diǎn):
    1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;
    2.符號問題;
    人教版初中完全平方公式教案篇六
    一、教學(xué)內(nèi)容:
    本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時(shí)——完全平方公式。
    二、教材分析:
    完全平方公式是乘法公式的重要組成部分,也是乘法運(yùn)算知識的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對多項(xiàng)式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運(yùn)算的必備知識,它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。
    本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對簡化某些代數(shù)式的運(yùn)算,培養(yǎng)學(xué)生的求簡意識很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。
    重點(diǎn):掌握完全平方公式,會運(yùn)用公式進(jìn)行簡單的計(jì)算。
    難點(diǎn):理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。
    三、教學(xué)目標(biāo)。
    (1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運(yùn)用公式進(jìn)行簡單計(jì)算。
    (2)進(jìn)一步發(fā)展學(xué)生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會獨(dú)立思考。
    (3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會與他人合作交流,體驗(yàn)解決問題的多樣性。
    (4)體驗(yàn)完全平方公式可以簡化運(yùn)算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過程中獲得體驗(yàn)成功的喜悅,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。
    四、學(xué)情分析與教法學(xué)法。
    學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運(yùn)算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強(qiáng)的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。
    學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨(dú)立思考、歸納總結(jié)、合作交流。
    總結(jié)反思中獲得數(shù)學(xué)知識與技能。
    教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動探究的學(xué)習(xí)狀態(tài)。
    五、教學(xué)過程(略)。
    六、教學(xué)評價(jià)。
    在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評價(jià)學(xué)生在知識技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識為出發(fā)點(diǎn),自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨(dú)立思考為主,當(dāng)遇到困難時(shí)學(xué)會求助交流,教師也要給學(xué)生思考交流的時(shí)間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。
    在整個學(xué)習(xí)過程中,通過對學(xué)生參與自主探究的程度、合作交流的意識以及獨(dú)立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進(jìn)行評價(jià),并對學(xué)生的想法或結(jié)論給予鼓勵評價(jià)。
    人教版初中完全平方公式教案篇七
    完全平方公式是初中代數(shù)的一個重要組成部分,是學(xué)生在已經(jīng)掌握單項(xiàng)式乘法、多項(xiàng)式乘法及平方差公式基礎(chǔ)上的拓展,對以后學(xué)習(xí)因式分解、解一元二次方程、配方法、勾股定理及圖形面積計(jì)算都有舉足輕重的作用。
    本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項(xiàng)式乘多項(xiàng)式而得到的,同時(shí)又為下一節(jié)課打下了基礎(chǔ),環(huán)環(huán)相扣,層層遞進(jìn)。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會到從簡單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。
    多數(shù)學(xué)生的抽象思維能力、邏輯思維能力、數(shù)學(xué)化能力有限,理解完全平方公式的幾何解釋、推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)有一定困難。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結(jié)構(gòu)特征,進(jìn)一步發(fā)展學(xué)生的合情推理能力、合作交流能力和數(shù)學(xué)化能力。
    知識與技能。
    利用添括號法則靈活應(yīng)用乘法公式。
    過程與方法。
    利用去括號法則得到添括號法則,培養(yǎng)學(xué)生的逆向思維能力。
    情感態(tài)度與價(jià)值觀。
    鼓勵學(xué)生算法多樣化,培養(yǎng)學(xué)生多方位思考問題的習(xí)慣,提高學(xué)生的合作交流意識和創(chuàng)新精神。
    教學(xué)重點(diǎn)。
    理解添括號法則,進(jìn)一步熟悉乘法公式的合理利用。
    教學(xué)難點(diǎn)。
    在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號達(dá)到應(yīng)用公式的目的。
    思考分析、歸納總結(jié)、練習(xí)、應(yīng)用拓展等環(huán)節(jié)。
    師生活動。
    設(shè)計(jì)意圖。
    一.提出問題,創(chuàng)設(shè)情境。
    請同學(xué)們完成下列運(yùn)算并回憶去括號法則.。
    (1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括號法則:
    也就是說,遇“加”不變,遇“減”都變.。
    二、探究新知。
    把上述四個等式的左右兩邊反過來,又會得到什么結(jié)果呢?
    (1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)。
    (3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)。
    左邊沒括號,右邊有括號,也就是添了括號,同學(xué)們可不可以總結(jié)出添括號法則來呢?
    (學(xué)生分組討論,最后總結(jié))。
    添括號法則是:
    也是:遇“加”不變,遇“減”都變.。
    請同學(xué)們利用添括號法則完成下列練習(xí):
    1.在等號右邊的括號內(nèi)填上適當(dāng)?shù)捻?xiàng):
    (1)a+b-c=a+()(2)a-b+c=a-()。
    (3)a-b-c=a-()(4)a+b+c=a-()。
    判斷下列運(yùn)算是否正確.。
    (1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)。
    (3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)。
    三、新知運(yùn)用。
    例:運(yùn)用乘法公式計(jì)算。
    (1)(x+2y-3)(x-2y+3)(2)(a+b+c)2。
    (3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)。
    四.隨堂練習(xí):
    1.課本p111練習(xí)。
    2.《學(xué)案》101頁——鞏固訓(xùn)練。
    五、課堂小結(jié):
    通過本節(jié)課的學(xué)習(xí),你有何收獲和體會?
    六、檢測作業(yè)。
    習(xí)題14.2:必做題:3、4、5題。
    選做題:7題。
    知識梳理,教學(xué)導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情。
    交流合作,探究新知,以問題驅(qū)動,層層深入。
    歸納總結(jié),提升課堂效果。
    作業(yè)檢測,檢測目標(biāo)的達(dá)成情況。
    人教版初中完全平方公式教案篇八
    教學(xué)目標(biāo):
    1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導(dǎo)過程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。
    2、體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運(yùn)用公式進(jìn)行簡單的計(jì)算。
    4、在學(xué)習(xí)中使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。
    教學(xué)重點(diǎn):
    1、弄清完全平方公式的來源及其結(jié)構(gòu)特點(diǎn),用自己的.語言說明公式及其特點(diǎn);
    教學(xué)難點(diǎn):
    教學(xué)方法:
    探索討論、歸納總結(jié)。
    教學(xué)過程:
    一、回顧與思考。
    活動內(nèi)容:復(fù)習(xí)已學(xué)過的平方差公式。
    1、平方差公式:(a+b)(a―b)=a2―b2;
    公式的結(jié)構(gòu)特點(diǎn):左邊是兩個二項(xiàng)式的乘積,即兩數(shù)和與這兩數(shù)差的積。
    右邊是兩數(shù)的平方差。
    2、應(yīng)用平方差公式的注意事項(xiàng):弄清在什么情況下才能使用平方差公式。
    二、情境引入。
    活動內(nèi)容:提出問題:
    一塊邊長為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。
    用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。
    活動內(nèi)容:
    1、通過多項(xiàng)式的乘法法則來驗(yàn)證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a―b)2=a2―2ab+b2。
    2、引導(dǎo)學(xué)生利用幾何圖形來驗(yàn)證兩數(shù)差的完全平方公式。
    3、分析完全平方公式的結(jié)構(gòu)特點(diǎn),并用語言來描述完全平方公式。
    結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;
    右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
    語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
    2、總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
    五、鞏固練習(xí):
    1、下列各式中哪些可以運(yùn)用完全平方公式計(jì)算。
    一、學(xué)習(xí)目標(biāo)。
    1、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。
    二、學(xué)習(xí)重點(diǎn):會用完全平方公式進(jìn)行運(yùn)算。
    三、學(xué)習(xí)難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算。
    四、學(xué)習(xí)設(shè)計(jì)。
    (一)預(yù)習(xí)準(zhǔn)備。
    (1)預(yù)習(xí)書p23―26。
    (2)思考:和的平方等于平方的和嗎?
    1、已知實(shí)數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。
    2、已知(a+b)2=24,(a―b)2=20,求:
    (1)ab的值是多少?
    (2)a2+b2的值是多少?
    3、已知2(x+y)=―6,xy=1,求代數(shù)式(x+2)―(3xy―y)的值。
    1、(5―x2)2等于;
    答案:25―10x2+x4。
    解析:解答:(5―x2)2=25―10x2+x4。
    2、(x―2y)2等于;
    答案:x2―8xy+4y2。
    解析:解答:(x―2y)2=x2―8xy+4y2。
    3、(3a―4b)2等于;
    答案:9a2―24ab+16b2。
    解析:解答:(3a―4b)2=9a2―24ab+16b2。
    人教版初中完全平方公式教案篇九
    1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導(dǎo)過程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。
    2、體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運(yùn)用公式進(jìn)行簡單的計(jì)算。
    3、了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識。
    4、在學(xué)習(xí)中使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。
    1、弄清完全平方公式的來源及其結(jié)構(gòu)特點(diǎn),用自己的語言說明公式及其特點(diǎn);
    探索討論、歸納總結(jié)。
    一、回顧與思考。
    1、平方差公式:(a+b)(a—b)=a2—b2;
    公式的結(jié)構(gòu)特點(diǎn):左邊是兩個二項(xiàng)式的乘積,即兩數(shù)和與這兩數(shù)差的積。
    右邊是兩數(shù)的平方差。
    2、應(yīng)用平方差公式的注意事項(xiàng):弄清在什么情況下才能使用平方差公式。
    二、情境引入。
    活動內(nèi)容:提出問題:
    用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。
    活動內(nèi)容:
    1、通過多項(xiàng)式的乘法法則來驗(yàn)證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。
    2、引導(dǎo)學(xué)生利用幾何圖形來驗(yàn)證兩數(shù)差的完全平方公式。
    3、分析完全平方公式的結(jié)構(gòu)特點(diǎn),并用語言來描述完全平方公式。
    結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;
    右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。
    語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。
    2、總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
    五、鞏固練習(xí):
    一、學(xué)習(xí)目標(biāo)。
    1、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。
    三、學(xué)習(xí)難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算。
    四、學(xué)習(xí)設(shè)計(jì)。
    (一)預(yù)習(xí)準(zhǔn)備。
    (1)預(yù)習(xí)書p23—26。
    (2)思考:和的平方等于平方的和嗎?
    1、已知實(shí)數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。
    2、已知(a+b)2=24,(a—b)2=20,求:
    (1)ab的值是多少?
    (2)a2+b2的值是多少?
    3、已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。
    1、(5—x2)2等于;
    答案:25—10x2+x4。
    解析:解答:(5—x2)2=25—10x2+x4。
    2、(x—2y)2等于;
    答案:x2—8xy+4y2。
    解析:解答:(x—2y)2=x2—8xy+4y2。
    3、(3a—4b)2等于;
    答案:9a2—24ab+16b2。
    解析:解答:(3a—4b)2=9a2—24ab+16b2。
    人教版初中完全平方公式教案篇十
    1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。
    2、掌握運(yùn)用完全平方公式分解因式的`方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過兩次)。
    教學(xué)方法:對比發(fā)現(xiàn)法課型新授課教具投影儀。
    教師活動:學(xué)生活動。
    新課講解:
    (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:
    a2+8a+16=a2+2×4a+42=(a+4)2。
    a2-8a+16=a2-2×4a+42=(a-4)2。
    (要強(qiáng)調(diào)注意符號)。
    首先我們來試一試:(投影:牛刀小試)。
    1.把下列各式分解因式:
    (1)x2+8x+16;;(2)25a4+10a2+1。
    (3)(m+n)2-4(m+n)+4。
    (教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點(diǎn),及時(shí)糾正)。
    2.把81x4-72x2y2+16y4分解因式。
    (本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)。
    將乘法公式反過來就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。
    練習(xí):第88頁練一練第1、2題。
    人教版初中完全平方公式教案篇十一
    1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。
    2、掌握運(yùn)用完全平方公式分解因式的'方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過兩次)。
    對比發(fā)現(xiàn)法課型新授課教具投影儀。
    學(xué)生活動。
    (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:
    a2+8a+16=a2+2×4a+42=(a+4)2。
    a2-8a+16=a2-2×4a+42=(a-4)2。
    (要強(qiáng)調(diào)注意符號)。
    首先我們來試一試:(投影:牛刀小試)。
    1.把下列各式分解因式:
    (1)x2+8x+16;;(2)25a4+10a2+1。
    (3)(m+n)2-4(m+n)+4。
    (教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點(diǎn),及時(shí)糾正)。
    2.把81x4-72x2y2+16y4分解因式。
    (本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)。
    將乘法公式反過來就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。
    第88頁練一練第1、2題。
    人教版初中完全平方公式教案篇十二
    (l)(2)(3)(4)。
    學(xué)生活動:學(xué)生分組討論,選代表解答.。
    練習(xí)三。
    甲的計(jì)算過程是:原式。
    乙的計(jì)算過程是:原式。
    丙的計(jì)算過程是:原式。
    丁的計(jì)算過程是:原式。
    (2)想一想,與相等嗎?為什么?
    與相等嗎?為什么?
    學(xué)生活動:觀察、思考后,回答問題.。
    練習(xí)四。
    (l)(2)。
    (3)(4)。
    (四)總結(jié)、擴(kuò)展。
    這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.。
    引導(dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時(shí)應(yīng)該注意的問題.。
    八、布置作業(yè)。
    p1331,2.(3)(4).。
    參考答案。
    略.。
    人教版初中完全平方公式教案篇十三
    本節(jié)教材是初中數(shù)學(xué)七年級下冊第一章第八節(jié)的內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了整式的加、減、乘、除及平方差公式的基礎(chǔ)上,對多項(xiàng)式乘法的進(jìn)一步深入和拓展;另一方面,又為學(xué)習(xí)《因式分解》《配方法》等知識奠定了基礎(chǔ),是進(jìn)一步研究《一元二次方程》《二次函數(shù)》的工具性內(nèi)容。鑒于這種認(rèn)識,我認(rèn)為,本節(jié)課不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。
    2、學(xué)情分析。
    從心理特征來說,初中階段的學(xué)生邏輯思維能力有待培養(yǎng),從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。但同時(shí),這一階段的學(xué)生好動,注意力易分散,愛發(fā)表見解,希望得到老師的表揚(yáng),所以在教學(xué)中應(yīng)抓住這些特點(diǎn),一方面運(yùn)用直觀生動的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面,要創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
    從認(rèn)知狀況來說,學(xué)生在此之前已經(jīng)學(xué)習(xí)了多項(xiàng)式乘法法則、平方差公式的探索過程,對“完全平方公式”已經(jīng)有了初步的認(rèn)識,為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ),但對于“完全平方公式”的理解,(由于其抽象程度較高,)學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明白,深入淺出的分析。
    3、教學(xué)重難點(diǎn)。
    根據(jù)以上對教材的地位和作用,以及學(xué)情分析,結(jié)合新課標(biāo)對本節(jié)課的要求,我將本節(jié)課的重點(diǎn)確定為:
    對公式(a+b)2=a2+2ab+b2的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、語言表述(學(xué)生自己的語言)、幾何解釋。
    難點(diǎn)確定為:從廣泛意義上理解完全平方公式的符號含義,培養(yǎng)學(xué)生有條理的思考和語言表達(dá)能力。
    人教版初中完全平方公式教案篇十四
    重點(diǎn)、難點(diǎn)根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接?jì)算。
    1.邊長為(a+b)的正方形面積是多少?
    2.邊長分別為a、b拍的兩個正方形面積和是多少?
    3.你能比較(1)(2)的結(jié)果嗎?說明你的理由。師生共同討論:學(xué)生回答(1)(a+b)(2)a+b(3)因?yàn)?a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大。
    例1.利用完全平方式計(jì)算1.102。
    計(jì)算:
    1.(a+b+c)。
    2.(a+b)師生共同分析:對于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件。如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學(xué)生動筆:在練習(xí)本上解答,并與同伴交流你的做法。學(xué)生敘述。
    p381。
    本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運(yùn)算時(shí)注意以下幾點(diǎn)。1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤。2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接?jì)算。3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件。利用了這種方法,可以把多項(xiàng)式的完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方。
    課本習(xí)題1.14p381、2、3.
    1.9整式的除法第一課時(shí)單項(xiàng)式除以單項(xiàng)式教學(xué)目標(biāo)1.經(jīng)歷探索單項(xiàng)式除法的法則過程,了解單項(xiàng)式除法的意義。
    2.理解單項(xiàng)式除法法則,會進(jìn)行單項(xiàng)式除以單項(xiàng)式運(yùn)算。重點(diǎn)、難點(diǎn)重點(diǎn):單項(xiàng)式除以單項(xiàng)式的運(yùn)算。難點(diǎn):單項(xiàng)式除以單項(xiàng)式法則的理解。