教資高中數(shù)學教學設計(專業(yè)12篇)

字號:

    總結(jié)通常涉及回顧過去的經(jīng)驗、總結(jié)關鍵問題以及提出改進和發(fā)展的建議。總結(jié)應該突出重點和核心內(nèi)容,避免涉及太多次要的細節(jié)。以下是小編整理的一些總結(jié)樣例,供大家參考和對比分析。
    教資高中數(shù)學教學設計篇一
    新學期已經(jīng)開始,在學校工作總體思路的.指導下,現(xiàn)將本學期數(shù)學組工作進行規(guī)劃、設想,力爭使本學期的工作扎實有效,為學校的發(fā)展做出新的貢獻。
    以學校工作總體思路為指導,深入學習和貫徹新課程理念,以教育教學工作為重點,優(yōu)化教學過程,提高課堂教學質(zhì)量。結(jié)合數(shù)學組工作實際,用心開展教育教學研究活動,促進教師的專業(yè)發(fā)展,學生各項素質(zhì)的提高,提高數(shù)學組教研工作水平。
    1、加強常規(guī)教學工作,優(yōu)化教學過程,切實提高課堂教學質(zhì)量。
    2、加強校本教研,用心開展教學研究活動,鼓勵教師根據(jù)教學實際開展教學研究,透過撰寫教學反思類文章等促進教師的專業(yè)化發(fā)展。
    3、掌握現(xiàn)代教育技術,用心開展網(wǎng)絡教研,拓展教研的深度與廣度。
    4、組織好學生的數(shù)學實踐活動,以調(diào)動學生學習用心性,豐富學生課余生活,促進其全面發(fā)展。
    1、備課做好教學準備是上好課的前提,本學期要求每位教師做好教案、教學用具、作業(yè)本等準備,以良好的精神狀態(tài)進入課堂。
    備課是上好課的基礎,本學期數(shù)學組仍采用年級組群眾備課形式,要求教案盡量做到環(huán)節(jié)齊全,反思具體,有價值。群眾備課時,所有教師務必做好準備,每個單元負責教師要提前安排好資料及備課方式,對于教案中修改或補充的資料要及時地在旁邊批注,電子教案的可在旁邊用紅色批注(發(fā)布校園網(wǎng)數(shù)學組板塊內(nèi)),使群眾備課不流于形式,每節(jié)課前都要做到課前的“復備”。每一位教師在個人研究和群眾備課的基礎上構(gòu)成適合自己、實用有效的教案,更好的為課堂教學服務。各年級組每月帶給單元備課活動記錄,在規(guī)定的群眾備課時間,教師無特殊原因不得缺席。
    提高課后反思的質(zhì)量,提倡教學以后將課堂上精彩的地方進行實錄,以案例形式進行剖析。對于原教案中不合理的及時記錄,結(jié)合課堂重新修改和設計,同年級教師能夠共同反思、共同提高,為以后的教學帶給借鑒價值。數(shù)學教師每周反思不少于2次,每學期要有1-2篇較高水平的反思或教學案例,及時發(fā)布在向校園網(wǎng)上,學校將及時進行評審。
    教案檢查分平時抽查和定期檢查兩種形式,“推門課”后教師要及時帶給本節(jié)課的教案,每月26號為組內(nèi)統(tǒng)一檢查教案時間,每月檢查結(jié)果將公布在校園網(wǎng)數(shù)學組板塊中的留言板中。
    2、課堂教學課堂是教學的主陣地。教師不但要上好公開課,更要上好每一天的“常規(guī)課”。遵守學校教學常規(guī)中對課堂教學的要求。課堂上要用心的創(chuàng)設有效的教學情境,要重視學習方法、思考方法的滲透與指導,重視數(shù)學知識的應用性。學校將繼續(xù)透過聽“推門課”促進課堂教學水平的提高,發(fā)現(xiàn)教學新秀。公開課力求有特點,能側(cè)重一個教學問題,促進組內(nèi)教師的研討。一學期做到每人一節(jié),年輕教師上兩節(jié)。課堂對于比較成熟的公開課或研討課鼓勵大家錄像,保存資料,及時地向校園網(wǎng)推薦。
    教資高中數(shù)學教學設計篇二
    進一步掌握直線方程的各種形式,會根據(jù)條件求直線的方程。
    【過程與方法】。
    在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。
    【情感、態(tài)度與價值觀】。
    在學習活動中獲得成功的體驗,增強學習數(shù)學的興趣與信心。
    二、教學重難點。
    【重點】根據(jù)條件求直線的方程。
    【難點】根據(jù)條件求直線的方程。
    (一)課堂導入。
    直接點明最近學習了直線方程的多種形式,這節(jié)課將練習求直線的方程。
    (二)回顧舊知。
    帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。
    為了加深學生的運用和理解,繼續(xù)引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。
    預設學生有多種解題方法,如ab、ac所在直線方程用兩點式求解,bc所在直線方程用點斜式求解。
    學生板演后教師講解,點明不足,提示學生,計算結(jié)束后要記得將所求得方程整理為直線方程的一般式。
    師生總結(jié)解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。
    (四)小結(jié)作業(yè)。
    小結(jié):學生暢談收獲。
    作業(yè):完成課后相應練習題,根據(jù)已知條件求直線的方程。
    教資高中數(shù)學教學設計篇三
    首先,可以聯(lián)系實際生活。數(shù)學知識在生活中有著廣泛的應用,與實際生活有著廣泛的聯(lián)系,在進行課堂導入設計時,教師可以聯(lián)系學生的實際生活,激發(fā)學生的好奇心。例如在學習拋物線的知識時,可以這樣導入:讓學生回想一下打籃球的情景,由于場地限制,在課堂上可以用乒乓球代替籃球,做投籃動作,讓學生仔細觀察籃球(乒乓球)落地時的軌跡,在學生積極參討論時,引入拋物線的知識。在導入中聯(lián)系實際生活,不僅能夠激發(fā)學生的興趣,并且能夠拉近學生與數(shù)學之間的距離。
    其次,教師可以利用數(shù)學史進行導入。數(shù)學教材中很多知識都與數(shù)學史相關,學生對這部分知識充滿興趣,因此在教學過程中,教師設計課堂導入時可以從這一點入手,先通過提問或者介紹的方式,讓學生了解數(shù)學史上的重大事件和重要人物等,引起學生的敬佩和仰慕之情,然后引入相關的數(shù)學知識。興趣是最好的老師,在學生的期待下展開數(shù)學教學,無疑會提高課堂教學效率。課堂導入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導入方式的多樣性,才能更好地激發(fā)學生的興趣,在高中數(shù)學教學中教師要根據(jù)實際情況進行合理選擇使用。
    做好課堂提問設計。
    首先,教師要精心設計問題。提問的目的是為了激發(fā)學生的興趣和思維,因此,教師提問的問題不能是單調(diào)、重復的,而應該是具有啟發(fā)性和針對性,能夠激發(fā)學生的思考,引導學生進行步步深入。最重要的是,教師提出的問題要符合學生的知識水平和認知能力,教師不僅應該了解教材,并且要全面了解學生,這樣才能使提出的問題符合學生的需要。學生的數(shù)學水平是不同的,接受能力也有差異,因此教師要注意提出問題的層次性,并針對不同水平的學生設計不同難度的問題,促進每個學生獲得進步和發(fā)展。
    其次,課堂提問的方式要多樣化。如同教學方式需要多樣化一樣,提問的方式也要具有多樣化的特點,這樣才能更好地激發(fā)學生興趣,達到教學目的,否則,無論教師設計的問題多么巧妙,學生也會感到厭煩。根據(jù)問題的內(nèi)容和學生實際情況,提問可以是直接問答;可以是導思式;可以教師提問、學生回答;也可以是學生提問、教師回答。在教學過程中教師要注意培養(yǎng)學生的問題意識,鼓勵學生自己提出問題,問題是思考的開端,對于學生來說提出問題比解決問題更重要,因此,教師要為學生創(chuàng)造機會,讓學生在認真閱讀教材的基礎上,根據(jù)自己的理解提出不懂的問題。提出的問題教師可以進行點撥,讓學生思考,也可以組織學生進行討論,培養(yǎng)學生分析問題和解決問題的能力。
    教資高中數(shù)學教學設計篇四
    教學設計的優(yōu)劣對于提高教學質(zhì)量,培養(yǎng)學生思維,調(diào)動學生的積極性有著十分重要的意義。在實施高中數(shù)學新課改的今天,怎樣完成一個優(yōu)秀的教學設計呢?我們認為應該從以下幾個方面著手:
    一、教學設計應有利于讓學生學會學習,發(fā)揮學生的主體作用。
    傳統(tǒng)的課堂設計,常常是“教師問,學生答,教師寫,學生記,教師考,學生背?!痹谶@樣教學下,學生機械被動地學習,不能主動對話、溝通、交流。久而久之,他們學習數(shù)學的興趣會逐漸褪去。新課程標準要求教師必需轉(zhuǎn)變角色,尊重學生的主體性,以新的理念指導設計教學。在教學過程中,要根據(jù)不同學習內(nèi)容,使學習成為在教師指導下自動的、建構(gòu)過程。教師是教學過程的組織者和引導者,教師在設計教學目標,組織教學活動等方面,應面向全體學生,突出學生的主體性,充分發(fā)揮學生的主觀能動性,讓學生自主參與探究問題。
    二、教學設計應注重初高中知識的銜接問題。
    總結(jié)。
    提高學生的自學能力善于思考、勇于鉆研的意識。
    三、
    教學設計應考慮到學生當前的知識水平。
    我校學生,大部分是居于中等及以下的學生,基礎知識、基本技能、基本數(shù)學思想方法差,思維能力、運算能力較低,空間想象能力以及實踐和創(chuàng)新意識能力更無須談說。因此數(shù)學學習還處在比較被動的狀態(tài),存在問題較多,主要表現(xiàn)在:
    1、學習懶散,不肯動腦;
    2、不訂計劃,慣性運轉(zhuǎn);
    5、死記硬背,機械模仿,教師講的聽得懂,例題看得懂,就是書上的作業(yè)做不起;
    6、不懂不問,一知半解;
    8、不重總結(jié),輕視復習。因此教師需多花時間了解學生具體情況、學習狀態(tài),對學生數(shù)學學習方法進行指導,力求做到轉(zhuǎn)變思想與傳授方法結(jié)合,課上與課下結(jié)合,學法與教法結(jié)合,統(tǒng)一指導與個別指導結(jié)合,促進學生掌握正確的學習方法。只有憑借著良好的學習方法,才能達到“事半功倍”的學習效果。
    四、教學設計中教師應以科學的眼光審視教材。
    高中數(shù)學新課程是具有厚實的數(shù)學專業(yè)和教育教學理論與實踐水平的專家群體,經(jīng)過深思熟慮、系統(tǒng)地分析教學的情況和學生的實際來編寫的。很多內(nèi)容編排很好,我們應該尊重教材,但我們不應迷信教材,認請教材的思路與意圖,理解教材中所蘊藏的知識、技能、情感與價值等層面上的內(nèi)涵,同時也應該用批判的眼光去審視它,不迷信教材,在此基礎上,要挖掘和超越教材,做到既忠實教材,又不拘泥于教材,結(jié)合本校、本班學生的實際情況,創(chuàng)新出最適合自己所教學生的題目,啟發(fā)、誘導學生進行深入的體驗和感悟,真正做到“走進教材,又走出教材?!?BR>    五、教學設計應注重新課的導入與新知識的形成過程。
    教師在授課過程中,應適時、適度地引出新課題,創(chuàng)設出最佳的教學氣氛,引起學生對本課題的興趣。
    常用的課題導入的幾種類型有1.創(chuàng)設生產(chǎn)生活化情境導入課題2.講故事引入課題。
    3.設置懸念,以疑激趣引入課題。
    六、教學設計應注重從學生的角度進行教學反思。
    教學行為的本質(zhì)在于使學生受益,教得好是為了促進學得好。在講習題時,當我們向?qū)W生介紹一些精巧奇妙的解法時,特別是一些奇思妙解時,學生表面上聽懂了,但當他自己解題時卻茫然失措。我們教師在備課時把要講的問題設計的十分精巧,連板書都設計好了,表面上看天衣無縫,其實,任何人都會遭遇失敗,教師把自己思維過程中失敗的部分隱瞞了,最有意義,最有啟發(fā)的東西抽掉了,學生除了贊嘆我們教師的高超的解題能力以外,又有什么收獲呢?所以貝爾納說“構(gòu)成我們學習上最大障礙的是已知的東西,而不是未知的東西”大數(shù)學家希爾伯特的老師富士在講課時就常把自己置于困境中,并再現(xiàn)自己從中走出來的過程,讓學生看到老師的真實思維過程是怎樣的。人的能力只有在逆境中才能得到最好的鍛煉。經(jīng)常去問問學生,對數(shù)學學習的感受,借助學生的眼睛看一看自己的教學行為,是促進教學的必要手段。
    教資高中數(shù)學教學設計篇五
    1.教師要解放思想,與時俱進。在傳統(tǒng)的高中數(shù)學教學中,大多數(shù)教師教學觀念陳舊,把教科書當成學生學習的惟一對象,照本宣科,不加分析的滿堂灌,學生則聽得很乏味,感覺有點看電影。改變教與學的方式,是高中新課程標準的基本理念,在高中數(shù)學教學中,教師應把學生當成學習的主人,充分挖掘?qū)W生的潛能,處處激發(fā)學生學習數(shù)學的興趣。教師不要大包大攬,把結(jié)論或推理直接展現(xiàn)給學生,要讓學生獨立思考,在此基礎上,讓師生、生生進行充分的合作與交流,努力實現(xiàn)多邊互動。積極倡導“自主、合作、探究”的教學模式。同時由于學生認知方式、水平、思維策略和學習能力的不同,一定會有個體差異,所以教師要實施“差異教學”使人人參與,人人獲得必需的數(shù)學,這樣也體現(xiàn)了教學中的民主、平等關系,采用這樣的教學方式,學生的學習熱情自然高漲,個性思維積極活躍,人格發(fā)展自然和諧。
    2.學生要轉(zhuǎn)變學法,主動出擊。鑒于目前的教學實際,必須創(chuàng)造條件讓學生能夠探究他們自己感興趣的問題并自主解決問題。新的課堂教學模式的特點關注學生的情感體驗,激發(fā)學生的愛國熱情,創(chuàng)設良好的教學情景。滲透了民主平等、自然和諧的教學思想,注重自主合作與探究生成,重視對學生的評價,把課堂還給學生,學生參與的時間明顯增多,老師們能注重以學生為主體,師生互動形式多樣。讓學生主動站起回答教師提出的問題,讓學生主動上臺演排,讓學生間相互交流,分組討論,把課堂還給學生,讓學生在參與中實現(xiàn)知識的生成。
    3.課堂要形式多樣,追求高效。新的數(shù)學課程理念倡導數(shù)學教學應該根據(jù)不同教學內(nèi)容的要求,采用不同教學方式。數(shù)學課程要講推理,更要講道理。通過典型例子的分析和學生自主探索活動,使學生理解數(shù)學概念、結(jié)論的形成過程,體會蘊涵在其中的思想方法,追尋數(shù)學發(fā)展的歷史足跡。在內(nèi)容上,新課程注意把算法的內(nèi)容和思想融入到數(shù)學課程的各個相關部分。
    將本文的word文檔下載到電腦,方便收藏和打印。
    教資高中數(shù)學教學設計篇六
    1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。
    2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
    3、通過對四種命題之間關系的學習,培養(yǎng)學生邏輯推理能力。
    4、初步培養(yǎng)學生反證法的數(shù)學思維。
    二、教學分析。
    重點:四種命題;難點:四種命題的關系。
    1、本小節(jié)首先從初中數(shù)學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結(jié)合四種命題的知識,進一步講解反證法。
    3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。
    三、教學手段和方法(演示教學法和循序漸進導入法)。
    1、以故事形式入題。
    2、多媒體演示。
    四、教學過程。
    (一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學思想嗎?通過這節(jié)課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
    設計意圖:創(chuàng)設情景,激發(fā)學生學習興趣。
    (二)復習提問:
    1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?
    2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
    3.原命題真,逆命題一定真嗎?
    學生活動:
    設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.。
    (三)新課講解:
    1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
    2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
    3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
    (四)組織討論:
    讓學生歸納什么是否命題,什么是逆否命題。
    例1及例2。
    學生活動:
    討論后回答。
    這兩個逆否命題都真.。
    原命題真,逆否命題也真。
    引導學生討論原命題的真假與其他三種命題的真。
    假有什么關系?舉例加以說明,同學們踴躍發(fā)言。
    (六)課堂小結(jié):
    1、一般地,用p和q分別表示原命題的條件和結(jié)論,用vp和vq分別表示p和q否定時,四種命題的形式就是:
    原命題若p則q;
    逆命題若q則p;(交換原命題的條件和結(jié)論)。
    否命題,若vp則vq;(同時否定原命題的條件和結(jié)論)。
    逆否命題若vq則vp。(交換原命題的條件和結(jié)論,并且同時否定)。
    2、四種命題的關系。
    (1).原命題為真,它的逆命題不一定為真.。
    (2).原命題為真,它的否命題不一定為真.。
    (3).原命題為真,它的逆否命題一定為真。
    (七)回扣引入。
    分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:
    第一句:“該來的沒來”
    其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
    第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
    第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
    同學們,生活中處處是數(shù)學,期待我們善于發(fā)現(xiàn)的眼睛。
    五、作業(yè)。
    1.設原命題是“若。
    斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判。
    教資高中數(shù)學教學設計篇七
    教學目標:
    (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。
    (2)理解直線與二元一次方程的關系及其證明。
    教學用具:計算機。
    教學方法:啟發(fā)引導法,討論法。
    教學過程:
    前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
    問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。
    肯定學生回答,并糾正學生中不規(guī)范的表述。再看一個問題:
    問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。
    肯定學生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”。
    啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。
    學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
    【問題1】“任意直線的方程都是二元一次方程嗎?”
    這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
    學生或獨立研究,或合作研究,教師巡視指導。
    經(jīng)過一定時間的研究,教師組織開展集體討論。首先讓學生陳述解決思路或解決方案:
    思路一:…。
    思路二:…。
    教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
    按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
    當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
    當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
    學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
    平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
    綜合兩種情況,我們得出如下結(jié)論:
    在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程。
    至此,我們的問題1就解決了。簡單點說就是:直線方程都是二元一次方程。而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。
    同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
    學生們不難得出:二者可以概括為統(tǒng)一的形式。
    這樣上邊的結(jié)論可以表述如下:
    在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。
    啟發(fā):任何一條直線都有這種形式的方程。你是否覺得還有什么與之相關的問題呢?
    【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
    師生共同討論,評價不同思路,達成共識:
    (1)當時,方程可化為。
    這是表示斜率為、在軸上的截距為的直線。
    (2)當時,由于、不同時為0,必有,方程可化為。
    這表示一條與軸垂直的直線。
    因此,得到結(jié)論:
    在平面直角坐標系中,任何形如(其中不同時為0)的二元一次方程都表示一條直線。
    為方便,我們把(其中不同時為0)稱作直線方程的一般式是合理。
    【動畫演示】。
    演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線。
    至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關系。
    (三)練習鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設計。
    教資高中數(shù)學教學設計篇八
    1、數(shù)學知識:掌握等比數(shù)列的概念,通項公式,及其有關性質(zhì);。
    2、數(shù)學能力:通過等差數(shù)列和等比數(shù)列的類比學習,培養(yǎng)學生類比歸納的'能力;。
    歸納——猜想——證明的數(shù)學研究方法;。
    3、數(shù)學思想:培養(yǎng)學生分類討論,函數(shù)的數(shù)學思想。
    重點:等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學習等比數(shù)列;。
    難點:等比數(shù)列的性質(zhì)的探索過程。
    教學過程:
    1、問題引入:
    前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。
    問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?
    (學生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
    要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。
    已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。
    師:事實上,等差數(shù)列的關鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
    (第一次類比)類似的,我們提出這樣一個問題。
    問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。
    (這里以填空的形式引導學生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)。
    2、新課:
    1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。
    師生共同簡要回顧等差數(shù)列的通項公式推導的方法:累加法和迭代法。
    公式的推導:(師生共同完成)。
    若設等比數(shù)列的公比為q和首項為a1,則有:
    方法一:(累乘法)。
    3)等比數(shù)列的性質(zhì):
    下面我們一起來研究一下等比數(shù)列的性質(zhì)。
    通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。
    問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?
    (根據(jù)學生實際情況,可引導學生通過具體例子,尋找規(guī)律,如:
    3、例題鞏固:
    例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。
    答案:1458或128。
    例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
    (本題為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關鍵是對通項公式的理解)。
    1、小結(jié):
    今天我們主要學習了有關等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學習。
    我們不僅學到了關于等比數(shù)列的有關知識,更重要的是我們學會了由類比——猜想——證明的科學思維的過程。
    2、作業(yè):
    p129:1,2,3。
    1、教學目標和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質(zhì)是學生接下來學習等比數(shù)列的基礎,是必須要落實的;其次,數(shù)學教學除了要傳授知識,更重要的是傳授科學的研究方法,等比數(shù)列是在等差數(shù)列之后學習的因此對等比數(shù)列的學習必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學習,對培養(yǎng)學生類比——猜想——證明的科學研究方法是有利的。這也就成了本節(jié)課的重點。
    2、教學設計過程:本節(jié)課主要從以下幾個方面展開:
    1)通過復習等差數(shù)列的定義,類比得出等比數(shù)列的定義;。
    2)等比數(shù)列的通項公式的推導;。
    3)等比數(shù)列的性質(zhì);。
    有意識的引導學生復習等差數(shù)列的定義及其通項公式的探求思路,一方面使學生回顧舊。
    知識,另一方面使學生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎。
    在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規(guī)律,使學生體會觀察、類比、歸納等合情推理方法的應用。培養(yǎng)學生應用知識的能力。
    在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設計,使學生產(chǎn)生不得不考慮通項公式的心理傾向,造成學生認知上的沖突,從而使學生主動完成對知識的接受。
    通過等差數(shù)列和等比數(shù)列的通項公式的比較使學生初步體會到等差和等比的相似性,為下面類比學習等比數(shù)列的性質(zhì),做好鋪墊。
    等比性質(zhì)的研究是本節(jié)課的高潮,通過類比。
    關于例題設計:重知識的應用,具有開放性,為使學生更好的掌握本節(jié)課的內(nèi)容。
    教資高中數(shù)學教學設計篇九
    在課堂教學中,教師若想提高教學效率,則需了解學生學情,然后在此基礎上,緊扣教學內(nèi)容,采用多種教學方法,以調(diào)動學生參與性,使其積極思考,把握科學學習方法,從而提高學習效率。
    3.1分析學生學習情況。進入高中后,多數(shù)同學有了較為豐富的經(jīng)驗與知識,也具有了一定的抽象思維、分析概括、演繹推理能力,可通過觀察而抽象出一定的數(shù)學知識。同時,學生思維也由邏輯思維發(fā)展為抽象思維,但需依靠一些感知材料。當然,也有部分同學的數(shù)學基礎知識不牢固,對數(shù)學缺少學習興趣。因此,在高中數(shù)列教學中,教師需要根據(jù)學生認知結(jié)構(gòu),考慮學生學習特點,以貼近學生生活實際的實例為出發(fā)點,注意適時引導與啟發(fā),加強學生思維能力訓練,以適應學生學習心理發(fā)展特征。如教師可創(chuàng)設生活化的教學情境,引導學生由生活實際問題來學習數(shù)列知識,構(gòu)建數(shù)學模型。
    3.2分析教法與學法。當了解學生學習特點后,教師則需要靈活運用不同教學方法,以誘導學生主動參與課堂活動,展開積極思索。在課堂教學中,問題教學法是較為常用的,其主導思想為探究式教學。即教師精設系列問題,讓學生在老師指導與啟發(fā)下,自主分析與探究,從中獲得結(jié)論,增強體驗,得到知識,提高能力。如學習《等比數(shù)列前項和》時,教師可提出問題:某廠去年產(chǎn)值記作1,該廠計劃于今后五年內(nèi)每年產(chǎn)值比上一年增加10%,那么自今年起至第5年,該廠總產(chǎn)值是多少?該廠五年內(nèi)的逐年產(chǎn)值有何特點?通過什么公式可求出總產(chǎn)值?這樣,通過問題將學生帶入等比數(shù)列前項和的探究學習中。其次,誘導思維法。通過這一方法,可凸顯重點,幫助學生突破難點。同時,可發(fā)揮學生主觀能動性,使其主動構(gòu)建知識,培養(yǎng)創(chuàng)造精神。再次,分組討論法。利用這一方法,可加強了師生、生生間的交流互動,碰撞思維,啟迪智慧,使學生自主發(fā)現(xiàn)與解決問題。另外,還有講練結(jié)合法。對于一些重難點知識,還需要教師詳細見解,并借助典型例題,讓學生鞏固知識,掌握解題方法。此外,教師還需要對學生進行學法指導。如引導學生由實際問題對數(shù)組特征加以抽象,從而得到數(shù)列、等比與等差數(shù)列概念;如根據(jù)等比數(shù)列概念特征對等比數(shù)列通項公式加以推導等。在教學過程中,教師還可讓能力較強的學生拓展思維方法,運用不同方法來推導等差或等比數(shù)列通項公式。同時,教師還需為學生留出充足的思考空間與時間,讓學生大膽質(zhì)疑、自主聯(lián)想與探究。
    總而言之,數(shù)列是高中數(shù)學知識體系中十分重要的一部分,因此教師在教學過程中應以新課改教學理念為基本依據(jù),在教學過程中不斷對教學方法進行探索和研究,并充分利用自身有力的教學特點根據(jù)不同學生的學習狀況來對教學方法進行創(chuàng)新,從而使教學效果得到有效提高。
    教資高中數(shù)學教學設計篇十
    1)。
    2)掌握等比數(shù)列的定義理解等比數(shù)列的通項公式及其推導。
    2、能力目標。
    1)學會通過實例歸納概念。
    2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設。
    3)提高數(shù)學建模的能力。
    3、情感目標:
    1)充分感受數(shù)列是反映現(xiàn)實生活的模型。
    2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活。
    3)數(shù)學是豐富多彩的而不是枯燥無味的。
    1、教學對象分析:
    1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎,理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。
    2)對歸納假設較弱,應加強這方面教學。
    2、學習需要分析:
    1.課前復習。
    1)復習等差數(shù)列的概念及通向公式。
    2)復習指數(shù)函數(shù)及其圖像和性質(zhì)。
    2.情景導入。
    教資高中數(shù)學教學設計篇十一
    教學目標:
    (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題。
    (2)進一步理解曲線的方程和方程的曲線。
    (3)初步掌握求曲線方程的方法。
    (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力。
    教學重點、難點:求曲線的方程。
    教學用具:計算機。
    教學方法:啟發(fā)引導法,討論法。
    教學過程:
    【引入】。
    1.提問:什么是曲線的方程和方程的曲線。
    學生思考并回答,教師強調(diào)。
    2.坐標法和解析幾何的意義、基本問題。
    對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何,解析幾何的兩大基本問題就是:
    (1)根據(jù)已知條件,求出表示平面曲線的方程。
    (2)通過方程,研究平面曲線的性質(zhì)。
    【問題】。
    如何根據(jù)已知條件,求出曲線的方程。
    【概括總結(jié)】通過學生討論,師生共同總結(jié):
    分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
    首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:
    (1)建立適當?shù)淖鴺讼?,用有序?qū)崝?shù)對例如表示曲線上任意一點的坐標;。
    (2)寫出適合條件的點的集合;。
    (3)用坐標表示條件,列出方程;。
    (4)化方程為最簡形式;。
    (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.
    上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正。
    下面再看一個問題:
    【小結(jié)】師生共同總結(jié):
    (1)解析幾何研究研究問題的方法是什么?
    (2)如何求曲線的方程?
    【作業(yè)】課本第72頁練習1,2,3;。
    教資高中數(shù)學教學設計篇十二
    (1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數(shù)學中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
    (2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
    (3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣。
    (1)重點:了解集合的含義與表示、集合中元素的特性。
    (2)難點:區(qū)別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
    [設計意圖]引出“集合”一詞。
    【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
    [設計意圖]探討并形成集合的含義。
    【問題3】請同學們舉出認為是集合的例子。
    [設計意圖]點評學生舉出的例子,剖析并強調(diào)集合中元素的三大特性:確定性、互異性、無序性。
    [設計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關系。
    [設計意圖]引出并介紹列舉法。
    【問題6】例1的講解。同學們能用列舉法表示不等式x-73的解集嗎?
    【問題7】例2的講解。請同學們思考課本第6頁的思考題。
    [設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
    【問題8】請同學們總結(jié)這節(jié)課我們主要學習了那些內(nèi)容?有什么學習體會?
    [設計意圖]學習小結(jié)。對本節(jié)課所學知識進行回顧。布置作業(yè)。