通過天文學的學習,我們可以更好地理解我們自身在宇宙中的位置,增加對宇宙的敬畏之心??偨Y(jié)需要簡明扼要地表達,并結(jié)合實際案例。以下是一些學習總結(jié)的例子,希望能對同學們的學習有所幫助。
不等式基本性質(zhì)教學設計篇一
1、理解和掌握比例的意義和基本性質(zhì),認識比例的各部分的名稱,體會數(shù)學的規(guī)律美。
2、利用比例知識解決實際問題。
3、培養(yǎng)學生自主參與的意識、主動探究的精神,激發(fā)學生的審美愉悅。培養(yǎng)學生進行初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維。
一、談話導入,創(chuàng)設情境:
出示cai課件(一張微型照片)。你能看出這是杭州哪一個景點的照片?的確,照片太小了,那現(xiàn)在老師將這張照片按一定比例放大一些,。由此出現(xiàn)一張平湖秋月的風景照。
我們的祖國方圓960萬平方公里,幅員遼闊卻能在一張小小的地圖上清晰可見各地位置。建筑設計師可將濱江四區(qū)的設計構(gòu)想展示在一張紙上。這些,都要用到比例的知識,我們今天就來學習有關(guān)比例的一些知識。
二、自主探究,學習新知。
(一)教學比例的意義。
1、8厘米。
出示。
6厘米。
4厘米。
3厘米。
(1)根據(jù)表中給出的數(shù)量寫出有意義的比。
(2)哪些比是相關(guān)聯(lián)的?
(3)根據(jù)以往經(jīng)驗,可將相等的兩個比怎樣?(用等號連接)。
教師并指出這些式子就是比例。
2、讓學生任意寫出比例,并讓學生用自己的語言描述比例的意義。
3、教師板書:表示兩個比相等的式子叫做比例。比例也可用分數(shù)形式表示。
4、寫出比值是1/3的兩個比,并組成比例。
1、比例和比有什么區(qū)別?
2、認識比例的各部分。
(1)讓學生自己取。
(2)組成比例的四個數(shù)叫做比例的項,兩端的兩項叫做比例的。
外項,中間的兩項叫做比例的內(nèi)項。
板書:8:6=4:3。
內(nèi)項。
外項。
(3)讓學生找出自己舉的比例的內(nèi)外項。
()。
12。
2
()。
=
(4)找出分數(shù)形式比例的內(nèi)外項位置又是怎樣的?
3、出示【啟迪學生思維,展開審美想象】。
(1)這個比例已知的是哪兩項,要求的又是哪兩項?學生試填。
(2)學生反饋,教師板書。
(3)你發(fā)現(xiàn)了什么?
(4)指導學生概括出比例的基本性質(zhì),并板書:在比例里,兩個外項之積等于兩個內(nèi)項之積。
4、用比例性質(zhì)驗證你所寫比例是否正確。
5、練習8:12=x:45。
0.5。
x
20。
32。
=
求比例中的未知項,叫做解比例。
如何證明你的解是正確的?
(三)小結(jié):今天這堂課你有什么收獲?
三、鞏固練習。
1、下面哪幾組中的兩個比可以組成比例。
4
1
12:24和18:36。
0.4:和0.4:0.15。
14:8和7:4。
5
2
2、根據(jù)18x2=9x4寫出比例?!倔w會到數(shù)學的邏輯美,規(guī)律美】。
3、從1、8、0.6、3、7五個數(shù)中。
(1)選出四個數(shù),組成比例。
(2)任意選出3個數(shù),再配上另一個數(shù),組成比例。
(3)用所學知識進行檢驗。
四、實際應用。
不久前,汪駿強家的菜地邊高高矗立起一個新鐵塔,這天午后,陽光明媚,鄰居家剛讀一年級的小明又拉著汪駿強來到鐵塔下,玩著玩著,小明問道:“強強哥哥,這鐵塔干嘛用?”“鐵塔嘛,架設高壓線用的,以后等電線架好了,可不能再來玩了,更不能攀登,高壓線可危險了!”“那這個鐵塔有多高壓呀?”
同學們,如果你是汪駿強,你準備怎么辦?
不等式基本性質(zhì)教學設計篇二
1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。
3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。
運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
聯(lián)系分數(shù)與除法的關(guān)系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。
多媒體課件長方形白紙、圓片,彩色筆等。
一、創(chuàng)設情境,激趣導入。
生1:四、五、六年級分的地一樣多。
生2:……。
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知。
1,小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2,匯報結(jié)果。
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。
生5:……。
3、課件展示,得出結(jié)論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結(jié)得到校長分的地一樣多。)。
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)。
師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?
生:相等。
師:同學們請看這組分數(shù)有什么特點?(板書=)。
生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。
生:分子分母同時乘2,……。
師:誰能用一句換來描述一下這個規(guī)律?
生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)。
師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?
生:分數(shù)的分子分母同時除以相同的數(shù)。
師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書分數(shù)的基本性質(zhì))。
生:0除外。
師:為什么0要除外?
生:因為分數(shù)的分母不能為0.
師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?
生:同時相同0除外。
師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?
生:商不變的性質(zhì)。
師:為什么?
生:我們學過分數(shù)與除法的關(guān)系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。
師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三:應用新知,練習鞏固。
(一)練一練。
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。
(二)判斷(搶答)。
1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。
2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。
3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。
(四)測一測。
1、把和都化成分母是10而大小不變的分數(shù)。
2、把和都化成分子是4而大小不變的分數(shù)。
3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?
四:總結(jié)。
1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)。
五:作業(yè)練習冊2、4題。
本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!
這樣的設計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。
本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經(jīng)驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。
在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。
不等式基本性質(zhì)教學設計篇三
《分數(shù)的基本性質(zhì)》是九年義務教育北師大版五年級上冊第三單元的內(nèi)容。
【設計理念】。
根據(jù)新課標的基本要求,我以培養(yǎng)學生的創(chuàng)新意識和實踐能力為重點,在教學中創(chuàng)設情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結(jié)果”的開放式教學流程。讓學生在問題情境中激活內(nèi)在要求,大膽猜想,使實驗成為內(nèi)在需求。通過觀察操作、經(jīng)歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。
【學情與教材分析】。
《分數(shù)的基本性質(zhì)》是北師大版小學數(shù)學教材五年級上冊第三單元《分數(shù)》的教學內(nèi)容,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是約分和通分的基礎,而約分和通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。學生之前已經(jīng)掌握了商不變的性質(zhì),在教學之后將其與分數(shù)的基本性質(zhì)進行聯(lián)系,有意識地加強分數(shù)與除法的關(guān)系,以便把舊知識遷移到新的知識中來。
【教學目標】。
1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。
3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。
【教學重點】運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
【教學難點】聯(lián)系分數(shù)與除法的關(guān)系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。
【教學準備】多媒體課件長方形白紙、圓片,彩色筆等。
【教學過程】。
一、創(chuàng)設情境,激趣導入。
生1:四、五、六年級分的地一樣多。
生2:……。
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知。
1,小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2,匯報結(jié)果。
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。
生5:……。
3、課件展示,得出結(jié)論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結(jié)得到校長分的地一樣多。)。
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)。
師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?
生:相等。
師:同學們請看這組分數(shù)有什么特點?(板書=)。
生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。
生:分子分母同時乘2,……。
師:誰能用一句換來描述一下這個規(guī)律?
生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)。
師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?
生:分數(shù)的分子分母同時除以相同的數(shù)。
師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的.新知識。(板書分數(shù)的基本性質(zhì))。
生:0除外。
師:為什么0要除外?
生:因為分數(shù)的分母不能為0.
師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?
生:同時相同0除外。
師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?
生:商不變的性質(zhì)。
師:為什么?
生:我們學過分數(shù)與除法的關(guān)系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。
師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三:應用新知,練習鞏固。
(一)練一練。
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。
(二)判斷(搶答)。
1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。
2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。
3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。
(四)測一測。
1、把和都化成分母是10而大小不變的分數(shù)。
2、把和都化成分子是4而大小不變的分數(shù)。
3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?
四:總結(jié)。
1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)。
五:作業(yè)練習冊2、4題。
【板書設計】。
給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
【教學反思】。
本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!
這樣的設計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。
本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經(jīng)驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。
在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。
不等式基本性質(zhì)教學設計篇四
1.理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。
3.較好實現(xiàn)知識教育與思想教育的有效結(jié)合。
理解和掌握分數(shù)的基本性質(zhì),并運用分數(shù)的基本性質(zhì)解決問題,進一步加深分數(shù)與除法之間的關(guān)系。
板書有關(guān)習題的幻燈片。
一、復習。
1.出示。
在括號里填上適當?shù)臄?shù):
指名說一說結(jié)果,并說一說你是根據(jù)什么填的?
二、課堂練習:
1.自主練習第4題。
學生先獨立做,教師巡視,并個別指導,集體訂正。
教師板書題目中的線段,指名讓學生板演。
在直線那些分數(shù)用同一個點表示是什么意思?(就是問哪幾個分數(shù)相等。)。
怎樣找出相等的分數(shù)?
讓學生自己找。集體訂正是要求學生說一說你是根據(jù)什么找出相等的分數(shù)的?
然后要求學生在書上把這幾個相應的點找出來。指名板演。
2.自主練習第5題。
先讓學生獨立做,教師巡視。個別指導。
指名說一說你的結(jié)果,并說一說你是根據(jù)什么填的。重點要求學生說清楚利用分數(shù)的基本性質(zhì)來進行填空。
教師根據(jù)學生的回答選擇幾個題目進行板書。
3.自主練習第6題。
先讓學生獨立做。教師巡視并個別指導。注意差生中出現(xiàn)的問題。
集體訂正。指名說一說自己的計算過程和結(jié)果。
教師根據(jù)學生的回答選擇幾個題目進行板書。
4.自主練習第7題。
學生獨立做。教師要求有困難的學生分組討論,教師個別指導。
集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據(jù)和理由。
5.自主練習第8題。
學生先獨立做。
不等式基本性質(zhì)教學設計篇五
1.理解比例的基本性質(zhì),認識比例的各部分名稱。2.能用比例的基本性質(zhì)正確判斷兩個比能否組成比例。學習重點理解比例的基本性質(zhì)。
一、復習(課件出示以下問題,指名學生回答)。
1、什么叫做比例?
2、什么樣的兩個比才能組成比例?
3、判斷下面的比,哪兩個比能組成比例?把組成的比例寫出來。3:918:303:61.8:0.92:49:27學生獨立完成后全班交流訂正。
判斷兩個比能不能組成比例,除了看比值是否相等,還有沒有其它的方法?這節(jié)課我們就一起來研究研究。
二、自主探索,體驗新知。(課件出示自學要求)。
1、自學要求:1)自學書第41頁的內(nèi)容,把重要的地方畫上線,不懂的問題用鉛筆標在書上。2)提示:可以結(jié)合以下問題進行自學:
(1)什么叫比例的項?比例中有幾個項?分別叫什么?(2)你能把比例改寫成分數(shù)形式嗎?改寫成分數(shù)后你還能找到比例的外項和內(nèi)項嗎?試試看.(3)比例的基本性質(zhì)是什么?你能用字母表示這個性質(zhì)嗎?根據(jù)比例的基本性質(zhì)如何判斷兩個比能不能組成一個比例.(4)小組中議一議并集體交流。
2、組織學生交流自學成果。1)試一試。
應用比例的基本性質(zhì),判斷下面的兩個比能否組成比例。如果能組成比例,把組成的比例寫出來,并指出比例的內(nèi)項和外項。
3:6和8:50.2:2.5和4:502)課件出示三組比例,讓學生填空。
三、鞏固練習。
課件出示練習題,學生練習。
四、課堂總結(jié)說一說本節(jié)課的收獲。
不等式基本性質(zhì)教學設計篇六
學習內(nèi)容分析:
“分數(shù)的基本性質(zhì)”是九年義務教育小學數(shù)學北師大版五年級上冊第三單元的內(nèi)容。它是在學生學習了分數(shù)的意義、分數(shù)大小的比較、商不變的性質(zhì)、分數(shù)與除法的關(guān)系的基礎上進行的,為以后學習約分、通分做準備。
學習者分析:
學生已掌握了分數(shù)的意義和商不變的性質(zhì),已具備一定的動手操作的能力和分析、概括能力,能用分數(shù)表示圖形的陰影部分,已具備一定的合作交流的意識和經(jīng)驗。
教學目標:
3:經(jīng)歷猜想、驗證、實踐等數(shù)學活動,合作學習能力得到提高,并進一步體驗數(shù)學學習的樂趣。
教學重點:
教學難點:
設計意圖:
“分數(shù)的基本性質(zhì)”在分數(shù)教學中占有重要的地位,它是約分,通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以,分數(shù)的基本性質(zhì)是本單元的教學重點之一,以前我曾經(jīng)聽過幾節(jié)這樣的課,感覺學生都比較容易理解,覺得這知識不難,用不著老師多講了,也就使整節(jié)課顯得有點單調(diào),枯燥。
基于以上原因,我在設計這節(jié)課時,大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。
教學過程:
一、復習舊知,引入新課。
1、直接寫出得數(shù):
(1)18÷6=(2)120÷40=(3)2÷3=—。
180÷60=12÷4=10÷15=—。
2、你能從前兩組題中回憶起商不變性質(zhì)嗎?(被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。)。
3、你能根據(jù)第三組題說出分數(shù)與除法的關(guān)系嗎?根據(jù)分數(shù)與除法的關(guān)系,將商不變性質(zhì)中的被除數(shù)、除數(shù)、商分別改為分子、分母、分數(shù)值后又怎么說?(分子和分母同時擴大或縮小相同的倍數(shù),分數(shù)值不變。)分數(shù)中是否真有這樣的規(guī)律呢?這節(jié)課我們就來探討這個問題。
(通過上述知識的復習,為下面溝通商不變性質(zhì)與分數(shù)基本性質(zhì)的聯(lián)系作準備。)。
二、小組合作,探究新知。
1、折一折,畫一畫。
師:請同學們拿出準備好的三張長方形紙片。
要求:1)將三張同樣大小的長方形紙片,分別平均分成4份、8份、16份。將第一張的3份畫上陰影,第二張的6份畫上陰影,第三張的12份畫上陰影。
2)用分數(shù)表示陰影部分,
3)將陰影部分剪下來進行比較,看看能發(fā)現(xiàn)什么?
2、匯報。(師將一份學生作品貼在黑板上),
請這一同學談談發(fā)現(xiàn):通過比較,三幅圖陰影部分面積一樣,因而三個分數(shù)一樣大。(師板書三個分數(shù)相等的式子)。
3、師出示例2的三幅圖。
4、請學生寫出表示陰影部分的分數(shù),再觀察三幅圖陰影部分面積,同樣得出三個分數(shù)一樣大的結(jié)論。
5、算一算。
2)學生先獨立思考,后小組里討論交流想法。
3)匯報。小組派代表匯報,教師根據(jù)匯報適當板書。
(通過折一折、畫一畫,培養(yǎng)學生的動手操作能力,同時給學生提供充分的感性材料,豐富他們的生活經(jīng)驗又可以激發(fā)學生的學習興趣。)。
三、概括性質(zhì),揭示課題。
1、師:哪位同學能用一句話把大家發(fā)現(xiàn)的規(guī)律概括出來呢?
2、師:像右邊那樣列式行嗎?=,為什么?你能將剛才概括出的規(guī)律修正一下嗎?(出示分數(shù)的基本性質(zhì),全班齊讀一遍。)。
3、師小結(jié):剛才我們所說的就是分數(shù)的基本性質(zhì),它在課本第四十三頁,請同學們翻開課本看一看,你有哪個地方要提醒大家注意的,請在課本上用筆標示出來。(全班再齊讀一遍)。
(讓學生概括分數(shù)的基本性質(zhì),培養(yǎng)學生的概括能力,通過分子分母同時乘以0,引導學生發(fā)現(xiàn)分母為0,分數(shù)沒有意義,以培養(yǎng)學生思維的縝密性,同時回應前面的復習練習。)。
四、解釋應用,強化認知。
2、第43頁試一試。
3、練一練。第44頁第4題。
4、判斷對錯。
(1)分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()。
(2)把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。()。
(3)3/4的分子乘3,分母除以3,分數(shù)的大小不變。()。
(4)10/24的分子加5,要使分數(shù)的大小不變,分母也必須加5。()。
5、數(shù)學游戲“你說我對”(圖略)。
(利用以上練習,運用所學的知識解決實際問題,提高解決問題的能力,培養(yǎng)應用意識。)。
四、小結(jié)回顧,評價激勵。
(復習所學知識和方法,加深認識,深化主題)。
六、布置作業(yè),拓展延伸。
課本第44頁第1、2、3題。(鞏固所學知識)。
不等式基本性質(zhì)教學設計篇七
教學目標:
1、讓學生理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
學習目標:
1、理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
重點難點:
2、讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
過程設計:
一、激情導入。
1、導入課題。
生讀故事。
2、明確目標。
理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系;并會應用分數(shù)的基本性質(zhì)。
3、預期效果。
達到教學目標。
二、民主導學。
任務一。
任務呈現(xiàn)。
動手操作驗證性質(zhì)。
自主學習。
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求。
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發(fā)現(xiàn)什么?
師:同位分工合作完成?,F(xiàn)在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發(fā)現(xiàn)?
請二至三位同學說一說。
生回答。師:現(xiàn)在你們知道孫悟空為什么笑了嗎?請同學回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數(shù)的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)。
下面請同學們把這個式子從左往右地觀察,看一下每個分數(shù)的分子分母怎樣變化?才得到下一個分數(shù)。
生:我發(fā)現(xiàn)了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
生回答:一個分數(shù)的分子分母同時擴大相同的倍數(shù),它們分數(shù)的大小不變。
請一至二名同學回答。
師板書:分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
請一同學回答,生:我們發(fā)現(xiàn)了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。
生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。(二名學生重復)。
師板書:或者除以。
師:你能根據(jù)剛才總結(jié)的規(guī)律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流。
師指著板書說明:我們說分子分母同時乘或除以相同的數(shù),分數(shù)的大小不變,那是不是包括所有的數(shù)呢?我們一起來看這樣一個分數(shù)。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)。
生:不成立,師:為什么。
生:因為0不能作除數(shù),師:0不能作除數(shù),所以這個式子是錯誤的。(畫叉)。
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)。
生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。
生:0除外。
師板書0除外。
生:同時和相同的數(shù)。
師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質(zhì)。(師板書課題)。
師:我相信如果當時豬八戒會這個分數(shù)的基本性質(zhì),那就不會出現(xiàn)這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。
生齊讀二遍。
師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。
任務二。
任務呈現(xiàn)。
課本76頁的例2,請一同學讀題。
自主學習。
生獨立完成,完成后和同位的同學說一說你是怎樣想的。
展示交流。
每題請二名同學回答,(集體訂正答案)。
檢測導結(jié)。
1、目標練習。
76頁“做一做”
練習十四的1、2、6、7題。
2、結(jié)果反饋。
生做完后同桌交流,再指名說說結(jié)果。
3、反思總結(jié)。
今天這節(jié)課你都學會了哪些知識?請大家談談學習了分數(shù)的基本性質(zhì)的收獲。
三、輔助設計。
教具課件設計。
小黑板正方形紙數(shù)塊。
板書設計。
練習和作業(yè)設計。
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結(jié):這節(jié)課我們學習了分數(shù)基本性質(zhì),而且我們還學會了根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)轉(zhuǎn)化成和它相等的另外一個分數(shù),其實生活當中還有許多的數(shù)學知識,如果你留心觀察,你就能夠發(fā)現(xiàn),我希望大家都能做一個在學習上面的有心人。
不等式基本性質(zhì)教學設計篇八
1.讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3.培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多?!?BR> 生乙:“我覺得小明分得多?!?BR> 生丙:“我覺得公平,他們?nèi)齻€分得一樣多。”
師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了?!?BR> 師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大?!?BR> 1.師:“下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了?!?BR> 首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)。
2.師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)。
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”
師:“那九分之三又是怎么得到的呢?大家一起說?!?BR> 生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三?!?BR> (學生說的同時,教師操作,分完后把圓片貼在黑板上。)。
3.師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
:原來三個圓的陰影部分是同樣大的。
師:“現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)。
生:“奶奶分月餅是公平的,因為他們?nèi)齻€分得的月餅一樣多。”
師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻€人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的?!?BR> 生乙:“這三個分數(shù)是相等的。”
師:“剛才的試驗證明,它們的大小是相等的?!保ò鍟?,打上等號)。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變?!?BR> 師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍?!?BR> 師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)。
“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說?!保▽W生討論后發(fā)言)。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結(jié)合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)。
1.學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術(shù)一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術(shù)。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結(jié)方法。
4.按規(guī)律寫出一組相等的分數(shù)。
不等式基本性質(zhì)教學設計篇九
1.使學生進一步理解比例的意義,懂得比例各部分名稱。2.經(jīng)歷探索比例基本性質(zhì)的過程,理解并掌握比例的基本性質(zhì)。3.能運用比例的基本性質(zhì)判斷兩個比能否組成比例?!窘虒W重點】比例的基本性質(zhì)。
2.應用比例的意義,判斷下面的比能否組成比例。6∶10和9∶15。
4.5∶1.5和10∶5教師結(jié)合回答說:剛才,你們是根據(jù)比例的意義先求出比值,再作出判斷的。老師不是這樣想的,可很快就判斷好了,想知道其中的秘密嗎?那學完今天的知識----比例的基本性質(zhì),老師的秘密對你來說就不是秘密了。
【設計意圖】注重從學生已有的知識出發(fā),為新課做好鋪墊。
二、自主探究。
三、反饋。
1.在四人小組里,將你的發(fā)現(xiàn)與同伴交流一下。
2.全班交流.(當學生說到比例的基節(jié)本性時,師引導學生探究驗證.)3.板書:在比例中,兩個外項的積等于兩個內(nèi)項的積。
【設計意圖】因為學生對比的知識了解甚多,在這一環(huán)節(jié),不是教師出示教材中的例子,而是讓學生自己舉例研究,使研究材料的隨機性大大增強,從而提高結(jié)論的可信度。這樣也能讓學生體會到歸納的過程,并滲透科學態(tài)度的教育。
五、鞏固練習。
1、應用比例的基本性質(zhì),判斷下面哪組中的兩個比能否組成比例(完成課本第41面的“做一做”)。
2、():4=6:()。
3、根據(jù)比例的基本性質(zhì),在()里填上適當?shù)臄?shù).(1)15∶3=():1(2)2∶0.5=1.2:()。
5.在a:3=8:b中()是內(nèi)項,a*b=()6.如果2a=7b(a,b不為零),那么a/b=()/()。
【設計意圖】練習主要是運用比例的基本性質(zhì)。要求學生講明理由,培養(yǎng)學生有根據(jù)思考問題的良好習慣,并與用比例的意義來判斷兩個比能不能組成比例形成對比;在填寫比例中未知數(shù)時,不僅要求學生說出理由,還要求學生進行檢驗,這樣培養(yǎng)學生良好的檢驗習慣和靈活解決問題的能力,培養(yǎng)良好的學習習慣,并且充分體現(xiàn)練習的層次性、開放性,讓孩子們發(fā)現(xiàn)比例的知識的奧妙。
六、通過本節(jié)課學習,你有什么收獲?還有什么疑問?
【設計意圖】關(guān)注學生知識與技能的掌握情況,并且留給孩子質(zhì)疑問難的空間。
七、布置作業(yè):
1、課本第43頁的第5題(全班完成)。
2、課本第44頁的第14題(學有余力的孩子完成)。
在比例里,兩個外項的積等于兩個內(nèi)項的積。這叫做比例的基本性質(zhì)。【板書設計意圖】這板書是為了突出重點,讓孩子能一目了然地看出比例各部分名稱以及兩個外項和兩個內(nèi)項的積到底是兩個數(shù)相乘。
不等式基本性質(zhì)教學設計篇十
1. 讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2. 根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3. 培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。
使學生理解分數(shù)的基本性質(zhì)。
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多?!?BR> 生乙:“我覺得小明分得多。”
生丙:“我覺得公平,他們?nèi)齻€分得一樣多?!?BR> 師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了。”
師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大?!?BR> 1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了?!?BR> 首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)
2. 師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二?!?BR> 師:“那九分之三又是怎么得到的呢?大家一起說?!?BR> 生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”
(學生說的同時,教師操作,分完后把圓片貼在黑板上。)
3. 師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
小結(jié):原來三個圓的陰影部分是同樣大的。
師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)
生:“奶奶分月餅是公平的,因為他們?nèi)齻€分得的月餅一樣多?!?BR> 師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻€人分的'月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的?!?BR> 生乙:“這三個分數(shù)是相等的?!?BR> 師:“剛才的試驗證明,它們的大小是相等的?!?板書,打上等號)
4. 研究分數(shù)的基本規(guī)律。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變?!?BR> 師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍?!?BR> 師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)
教師小結(jié):“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”
學生發(fā)言
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。(板題)
分數(shù)的基本性質(zhì)。
5. 深入理解分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說。”(學生討論后發(fā)言)
齊讀分數(shù)的基本性質(zhì),并用波浪線表出關(guān)鍵的詞。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結(jié)合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)
三、
1.學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術(shù)一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術(shù)。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結(jié)方法。
4.按規(guī)律寫出一組相等的分數(shù)。
這節(jié)課大家有什么收獲?
不等式基本性質(zhì)教學設計篇十一
1、了解比例各部分的名稱,探索并掌握比例的基本性質(zhì),會根據(jù)比例的基本性質(zhì)正確判斷兩個比能否組成比例,能根據(jù)乘法等式寫出正確的比例。
2、通過觀察、猜測、舉例驗證、歸納等數(shù)學活動,經(jīng)歷探究比例基本性質(zhì)的過程,滲透有序思考,感受變與不變的思想,體驗比例基本性質(zhì)的應用價值。
3、引導學生自主參與知識探究過程,培養(yǎng)學生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生的思維。
根據(jù)乘法等式寫出正確的比例。
多媒體課件。
本班的孩子基礎較差,很多孩子沒有養(yǎng)成好的學習習慣,好的思考方法,所以課堂上的重點放在了發(fā)現(xiàn)并概括出比例的基本性質(zhì)上。在比例的基本性質(zhì)應用時,重點突出孩子的思考過程,強調(diào)孩子有根據(jù)地思考,養(yǎng)成獨立思考的習慣。
一、舊知鋪墊導入。
2、比和比例有什么區(qū)別?
【設計意圖】。
注重從學生已有的知識出發(fā),為新課做好鋪墊。
二、自主探究。
過渡:同學們,比有各部位的名稱,把比組成比例后我們有了新的名稱,請自學課本第34頁。生閱讀后,請同學說出黑板上比例各部分的名稱。
【設計意圖】。
組成比例的四個數(shù)的名稱的認識對孩子們來說是比較簡單的,所以讓孩子們自學,培養(yǎng)孩子的自主學習能力,養(yǎng)成讀數(shù)學書的習慣。
三、反饋練習。
指出下面比例的外項和內(nèi)項。(投影出示)。
先小組之內(nèi)說一說,然后在指名回答。重點說分數(shù)形式的比例外項和內(nèi)項。
【設計意圖】。
這一環(huán)節(jié)重點學習組成一個比例的兩個比哪兩個數(shù)是外項,哪兩個數(shù)是內(nèi)項。重點突出分數(shù)形式下怎么去找比例的內(nèi)項和外項。
(1)投影出示幾組比例,讓學生觀察看看能有什么發(fā)現(xiàn)?細心的同學很快會發(fā)現(xiàn)這幾組比例數(shù)字相同,但是書寫位置不同。然后老師在質(zhì)疑,為什么這些比例里的四個數(shù)書寫位置不同卻能組成比例呢?請小組合作找個這個秘密。
(2)學生找出原因后,教師引導學生用一句話總結(jié)出來。并指出這叫做比例的基本性質(zhì),板書課題。
(3)繼續(xù)提出:是不是所有的比例都具有這樣的性質(zhì),舉例驗證,最后得出結(jié)論。
(4)比例寫出分數(shù)形式后,也就是等號兩端的分子分母交叉相乘,乘得的積也一定相等。
【設計意圖】。
這一環(huán)節(jié)我根據(jù)學生好奇的心理,用質(zhì)疑的方式來激發(fā)學生的學習興趣,讓學生主動去探索新知,這樣也能讓學生體會到總結(jié)歸納的過程,并滲透科學態(tài)度的教育。
五、鞏固練習。
1、應用比例的基本性質(zhì),判斷下面哪組中的兩個比能否組成比例(投影出示練習)。
2、應用比例的意義或者基本性質(zhì),判斷下面哪組中的兩個比可以組成比例。
(學生獨立完成后,用展示臺展示)。
3、根據(jù)比例的基本性質(zhì),在()里填上適當?shù)臄?shù)。(投影出示)。
六、全課總結(jié):
這節(jié)課你有什么收獲。
【設計意圖】。
關(guān)注學生知識與技能的掌握情況,并且留給孩子質(zhì)疑問難的空間。
七、拓展練習:把下面的等式改寫成比例。
3×40=8×15。
不等式基本性質(zhì)教學設計篇十二
教法與學法:
1.教學理念:“人人學有用的數(shù)學”
2.教學方法:觀察法、引導發(fā)現(xiàn)法、討論法.。
3.教學手段:多媒體應用教學。
4.學法指導:嘗試,猜想,歸納,總結(jié)。
根據(jù)《數(shù)學課程標準》的要求,教材和學生的特點,我制定了以下四個教學環(huán)節(jié)。
下面我將具體的教學過程闡述一下:
一、創(chuàng)設情境,導入新課。
上課伊始,我將用一個公園買門票如何才劃算的例子導入課題。
(此處學生是很容易得出買30張門票需要4x30=120(元),買27張門票需要5x27=135(元),由于120〈135,所以買30張門票比買27張還要劃算。由此建立了一個數(shù)與數(shù)之間的不等關(guān)系式)。
緊接著進一步提問:若人數(shù)是x時,又當如何買票劃算?
二、探求新知,講授新課。
引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量1205x的不等關(guān)系。那么在不等式概念提出之前,先讓學生回顧等式的概念,“類比”等式的概念,嘗試著去總結(jié)歸納出不等式的概念。使學生從一個低起點,通過獲得成功的體驗和克服困難的經(jīng)歷,增進應用數(shù)學的自信心,為下面的學習調(diào)動了積極。
接下來我用一組例題來鞏固一下對不等式概念的認知,把表示不等量關(guān)系的常用關(guān)鍵詞提出。
(1)a是負數(shù);
(2)a是非負數(shù);
(3)a與b的和小于5;
(4)x與2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3。
關(guān)鍵詞:非負數(shù),非正數(shù),不大于,不小于,不超過,至少。
難點突破:通過上面三組算式,學生已經(jīng)嘗試著歸納出不等式的三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點。在不等式性質(zhì)3用數(shù)探討出以后,換一個角度讓學生想一想,是否能在數(shù)軸上任取兩個點,用相反數(shù)的相關(guān)知識挖掘一下,乘以或除以一個負數(shù)時,任意兩個數(shù)比較是否性質(zhì)3都成立。通過“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對具體數(shù)的感知完成到字母代替數(shù)的升華。讓學生用實例對一些數(shù)學猜想作出檢驗,從而增加猜想的可信程度。同時,讓學生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
反饋練習:用一個小練習鞏固三條性質(zhì)。
如果ab,那么。
(1)a-3b-3(2)2a2b(3)-3a-3b。
提出疑問,我們討論性質(zhì)2,3是好象遺忘了一個數(shù)0。
引出讓學生歸納,等式與不等式的區(qū)別與聯(lián)系。
三、拓展訓練。
根據(jù)不等式基本性質(zhì),將下列不等式化為“”或“”的形式。
再次回到開頭的門票問題,讓學生解出相應的x的取值范圍。
四、小結(jié)。
1.新知識。
2.與舊知識的聯(lián)系。
五、作業(yè)的布置。
以上是我對這節(jié)課的教學的看法,希望各位專家指正。謝謝!
“讓學生主動參與數(shù)學教學的全過程,真正成為學習的主人”
不等式基本性質(zhì)教學設計篇十三
教學目的:使學生理解比的基本性質(zhì),掌握化簡比的方法。
教學重、難點:化簡比的方法。
教學過程:
一、復習。
1.除法中的商不變規(guī)律是什么?分數(shù)的基本性質(zhì)是什么?
2、比與除法、分數(shù)有什么關(guān)系?
3、求比值?5:15??4/5:8/15??0.8:0.12。
二、新授。
我們剛才復習了除法中商不變規(guī)律和分數(shù)的基本性質(zhì),又知道。
和除法、分數(shù)有著密切的聯(lián)系,比的前項相當于被除數(shù),比的。
項相當于除數(shù);比的前項也相當于分數(shù)的分子,比的后項相當。
分母。
那么在比中有什么樣的規(guī)律?讓學生自己討論初步說出結(jié)論。
比的前項和后項同時乘以或者同時除以相同的數(shù)(零除外)。
注意:為什么這里要同時乘以或除以相同的數(shù)不能是0?(因為如果乘以0,比的后項就變成了0,沒有意義。且0不能作除數(shù),更不能同時除以0)。
2.教學化簡比。
利用比的基本性質(zhì),我們可以把比化成最簡單的整數(shù)比。
出示例1:把下面各比化成最簡單的整數(shù)比。
(1)14:21??????(2)1/6:2/9??(3)1.25:2???。
(1)問:這道題的前項和后項都是什么數(shù)?怎樣才能使它化成最簡的整數(shù)比呢?(先讓學生自己討論解答,然后引導得出:要把它化成最簡整數(shù)比,就必須根據(jù)比的基本性質(zhì)把前、后項同時除以它們最大公約數(shù)7)。
(2)問:這是一道分數(shù)比,怎樣才能使它轉(zhuǎn)化成整數(shù)比?(讓學生自己動手做,后對照課本上的例題做法,對或者錯,共同完成后引導學生說出:要根據(jù)比的基本性質(zhì),把它的前后項同時乘以它們的分母的最小公倍數(shù)18,才能轉(zhuǎn)化成整數(shù)比)化成整數(shù)比以后,如果不是最簡的整數(shù)比,還要應用(1)題的方法繼續(xù)化簡。
(3)問:這道是小數(shù)比,怎樣化成整數(shù)比?(讓學生說說并自己解答。指導根據(jù)比的基本性質(zhì),把它的前后項同時乘以相同的數(shù),使它們轉(zhuǎn)化成整數(shù)比。如果這時還不是最簡整數(shù)比,要再除以前后項的最大公約數(shù),使它化為最簡整數(shù)比)。
(4)還有其它解法嗎?可根據(jù)學生所答具體分析,特別是分數(shù)比實際上可用是分數(shù)除法來計算化簡。
小結(jié):這節(jié)課我們學習了什么新知識?它的內(nèi)容是什么?還學會了什么?特別提示:化簡與求比值的得數(shù)有什么不同?(化簡的結(jié)果是一個比。求比值的結(jié)果是商,是一個數(shù))。
三、鞏固練習。
1.完成“做一做”的題目。
讓學生說一說化簡比的方法。
2.練習十二第5、7、8題。
3.練習十二第9題。
四、作業(yè)。練習十二第6、10題。
不等式基本性質(zhì)教學設計篇十四
1。讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2。根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3。培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多?!?BR> 生乙:“我覺得小明分得多。”
生丙:“我覺得公平,他們?nèi)齻€分得一樣多?!?BR> 師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了?!?BR> 師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大。”
1、師:“下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了?!?BR> 首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)。
2。師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)。
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一?!?BR> 生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二?!?BR> 師:“那九分之三又是怎么得到的呢?大家一起說?!?BR> 生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三?!?BR> (學生說的同時,教師操作,分完后把圓片貼在黑板上。)。
3。師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
:原來三個圓的陰影部分是同樣大的。
師:“現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)。
生:“奶奶分月餅是公平的,因為他們?nèi)齻€分得的月餅一樣多?!?BR> 師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻€人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的?!?BR> 生乙:“這三個分數(shù)是相等的。”
師:“剛才的試驗證明,它們的大小是相等的?!保ò鍟蛏系忍枺?。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變?!?BR> 師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍?!?BR> 師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)。
“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說。”(學生討論后發(fā)言)。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結(jié)合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)。
1、學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術(shù)一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術(shù)。
2、學生練習課本例題2,兩名學生在黑板上做。
3、學生自己小結(jié)方法。
4、按規(guī)律寫出一組相等的分數(shù)。
不等式基本性質(zhì)教學設計篇十五
“分數(shù)的基本性質(zhì)”是九年義務教育小學數(shù)學北師大版五年級上冊第三單元的內(nèi)容。它是在學生學習了分數(shù)的意義、分數(shù)大小的比較、商不變的性質(zhì)、分數(shù)與除法的關(guān)系的基礎上進行的,為以后學習約分、通分做準備。
學生已掌握了分數(shù)的意義和商不變的性質(zhì),已具備一定的動手操作的能力和分析、概括能力,能用分數(shù)表示圖形的陰影部分,已具備一定的合作交流的意識和經(jīng)驗。
3:經(jīng)歷猜想、驗證、實踐等數(shù)學活動,合作學習能力得到提高,并進一步體驗數(shù)學學習的樂趣。
“分數(shù)的基本性質(zhì)”在分數(shù)教學中占有重要的地位,它是約分,通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以,分數(shù)的基本性質(zhì)是本單元的教學重點之一,以前我曾經(jīng)聽過幾節(jié)這樣的.課,感覺學生都比較容易理解,覺得這知識不難,用不著老師多講了,也就使整節(jié)課顯得有點單調(diào),枯燥。
基于以上原因,我在設計這節(jié)課時,大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。
1、直接寫出得數(shù):
(1)18÷6=(2)120÷40=(3)2÷3=—。
180÷60=12÷4=10÷15=—。
2、你能從前兩組題中回憶起商不變性質(zhì)嗎?(被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。)。
3、你能根據(jù)第三組題說出分數(shù)與除法的關(guān)系嗎?根據(jù)分數(shù)與除法的關(guān)系,將商不變性質(zhì)中的被除數(shù)、除數(shù)、商分別改為分子、分母、分數(shù)值后又怎么說?(分子和分母同時擴大或縮小相同的倍數(shù),分數(shù)值不變。)分數(shù)中是否真有這樣的規(guī)律呢?這節(jié)課我們就來探討這個問題。
(通過上述知識的復習,為下面溝通商不變性質(zhì)與分數(shù)基本性質(zhì)的聯(lián)系作準備。)。
1、折一折,畫一畫。
師:請同學們拿出準備好的三張長方形紙片。
要求:1)將三張同樣大小的長方形紙片,分別平均分成4份、8份、16份。將第一張的3份畫上陰影,第二張的6份畫上陰影,第三張的12份畫上陰影。
2)用分數(shù)表示陰影部分,
3)將陰影部分剪下來進行比較,看看能發(fā)現(xiàn)什么?
2、匯報。(師將一份學生作品貼在黑板上),
請這一同學談談發(fā)現(xiàn):通過比較,三幅圖陰影部分面積一樣,因而三個分數(shù)一樣大。(師板書三個分數(shù)相等的式子)。
3、師出示例2的三幅圖,
4、請學生寫出表示陰影部分的分數(shù),再觀察三幅圖陰影部分面積,同樣得出三個分數(shù)一樣大的結(jié)論。
3、算一算。
2)學生先獨立思考,后小組里討論交流想法。
3)匯報。小組派代表匯報,教師根據(jù)匯報適當板書。
(通過折一折、畫一畫,培養(yǎng)學生的動手操作能力,同時給學生提供充分的感性材料,豐富他們的生活經(jīng)驗又可以激發(fā)學生的學習興趣。)。
1、師:哪位同學能用一句話把大家發(fā)現(xiàn)的規(guī)律概括出來呢?
2、師:像右邊那樣列式行嗎?=,為什么?你能將剛才概括出的規(guī)律修正一下嗎?(出示分數(shù)的基本性質(zhì),全班齊讀一遍。)。
3、師小結(jié):剛才我們所說的就是分數(shù)的基本性質(zhì),它在課本第四十三頁,請同學們翻開課本看一看,你有哪個地方要提醒大家注意的,請在課本上用筆標示出來。(全班再齊讀一遍)。
(讓學生概括分數(shù)的基本性質(zhì),培養(yǎng)學生的概括能力,通過分子分母同時乘以0,引導學生發(fā)現(xiàn)分母為0,分數(shù)沒有意義,以培養(yǎng)學生思維的縝密性,同時回應前面的復習練習。)。
2、第43頁試一試。
3、練一練。第44頁第4題。
4、判斷對錯。
(1)分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()。
(2)把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。()。
(3)3/4的分子乘3,分母除以3,分數(shù)的大小不變。()。
(4)10/24的分子加5,要使分數(shù)的大小不變,分母也必須加5。()。
4、數(shù)學游戲“你說我對”(圖略)。
(利用以上練習,運用所學的知識解決實際問題,提高解決問題的能力,培養(yǎng)應用意識。)。
(復習所學知識和方法,加深認識,深化主題)。
1、課本第44頁第1、2、3題。(鞏固所學知識)。
不等式基本性質(zhì)教學設計篇十六
教學目標:
1、讓學生理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
學習目標:
1、理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
重點難點:
2、讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
過程設計:
一、激情導入。
1、導入課題。
生讀故事。
2、明確目標。
理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系;并會應用分數(shù)的基本性質(zhì)。
3、預期效果。
達到教學目標。
二、民主導學。
任務一。
任務呈現(xiàn)。
動手操作驗證性質(zhì)。
自主學習。
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求。
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發(fā)現(xiàn)什么?
師:同位分工合作完成?,F(xiàn)在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發(fā)現(xiàn)?
請二至三位同學說一說。
生回答。師:現(xiàn)在你們知道孫悟空為什么笑了嗎?請同學回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數(shù)的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)。
下面請同學們把這個式子從左往右地觀察,看一下每個分數(shù)的分子分母怎樣變化?才得到下一個分數(shù)。
生:我發(fā)現(xiàn)了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
生回答:一個分數(shù)的分子分母同時擴大相同的倍數(shù),它們分數(shù)的大小不變。
請一至二名同學回答。
師板書:分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
請一同學回答,
生:我們發(fā)現(xiàn)了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。
生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。(二名學生重復)。
師板書:或者除以。
師:你能根據(jù)剛才總結(jié)的規(guī)律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流。
師指著板書說明:我們說分子分母同時乘或除以相同的數(shù),分數(shù)的大小不變,那是不是包括所有的數(shù)呢?我們一起來看這樣一個分數(shù)。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)。
生:不成立,
師:為什么。
生:因為0不能作除數(shù),
師:0不能作除數(shù),所以這個式子是錯誤的。(畫叉)。
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)。
生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。
生:0除外。
師板書0除外。
生:同時和相同的數(shù)。
師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質(zhì)。(師板書課題)。
師:我相信如果當時豬八戒會這個分數(shù)的基本性質(zhì),那就不會出現(xiàn)這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。
生齊讀二遍。
師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。
任務二。
任務呈現(xiàn)。
課本76頁的例2,請一同學讀題。
自主學習。
生獨立完成,完成后和同位的同學說一說你是怎樣想的。
展示交流。
每題請二名同學回答,(集體訂正答案)。
檢測導結(jié)。
1、目標練習。
76頁“做一做”
練習十四的1、2、6、7題。
2、結(jié)果反饋。
生做完后同桌交流,再指名說說結(jié)果。
3、反思總結(jié)。
今天這節(jié)課你都學會了哪些知識?請大家談談學習了分數(shù)的基本性質(zhì)的收獲。
三、輔助設計。
教具課件設計。
小黑板正方形紙數(shù)塊。
板書設計。
練習和作業(yè)設計。
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結(jié):這節(jié)課我們學習了分數(shù)基本性質(zhì),而且我們還學會了根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)轉(zhuǎn)化成和它相等的另外一個分數(shù),其實生活當中還有許多的數(shù)學知識,如果你留心觀察,你就能夠發(fā)現(xiàn),我希望大家都能做一個在學習上面的有心人。
不等式基本性質(zhì)教學設計篇十七
1、使學生理解和掌握分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2、通過猜想、驗證、歸納、總結(jié)等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學思想。
3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。
經(jīng)歷質(zhì)疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的基本性質(zhì)。
本節(jié)課我綜合采用了談話法,情境創(chuàng)設法、引導探究法、直觀演示法,組織學生經(jīng)歷觀察,猜測,得出結(jié)論。
為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。
1、媒體準備:白板。
2、資源準備:ppt。
1、導入——課件出示問題-——喚醒舊知。
2、探究新知——ppt課件——突破重點、分解難點。
3、拓展延伸。
一、聯(lián)系舊知,質(zhì)疑引思。
1、在自然數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的自然數(shù)嗎?
2、在小數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?
3、在分數(shù)的范圍內(nèi),可以找到兩個大小相等但分子和分母又都不相同的分數(shù)嗎?
【喚醒學生已有知識經(jīng)驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力?!俊?BR> 二、自主操作,驗證猜想。
1、初步驗證。
(1)提出問題。
(2)匯報方法。
2、深入驗證:
(1)在紙上寫上一組你認為可能相等的分數(shù);
(2)用你喜歡的方法來證明。
(3)學生操作。
(4)匯報交流。
(1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?
(2)歸納概括,總結(jié)規(guī)律,揭示課題。
4、運用規(guī)律,完成例2。
(1)理解題意。
(3)獨立完成,交流匯報。
【給學生提供開放的探究空間,滿足學生的探索欲望?!?。
三、知識應用,鞏固提升。
1、判斷。
(1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。
(2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。
石泉縣城關(guān)第二小學。
賈從先的分子乘以3,分母除以3,分數(shù)的大小不變。
才能使分數(shù)的大小不變?
四、回顧總結(jié),完善認知。
通過本節(jié)課的學習,你有什么收獲?
1、課前準備不足,我用的20xx版做的,結(jié)果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。
2、教學機智不足,沒有關(guān)注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。
3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結(jié)束語言有歧義。
不等式基本性質(zhì)教學設計篇十八
1、使學生認識比例的“項”以及“內(nèi)項”和“外項”。
2、理解并掌握比例的基本性質(zhì),會應用比例的基本性質(zhì)正確判斷兩個比能否組成比例。
3、通過自主學習,讓學生經(jīng)歷探究的過程,體驗成功的快樂。
本課時設計,在“項”以及“內(nèi)項”和“外項”的認識的設計上,以學生在老師的引導下逐步理解比例的有關(guān)知識,是以教師講授為主。而在本課時第二大塊內(nèi)容,理解并掌握比例的基本性質(zhì),本課時設計中,為學生提供開放真實的問題,通過學生自主收集信息,嘗試探索規(guī)律,引導學生寫出不同比例,在此基礎上放手讓學生在觀察中發(fā)現(xiàn)、思考,引導學生主動探索比例的基本性質(zhì)。
1)3:8=9:()0.5:()=5:17。
制造沖突,也為后面的思考題做理論鋪墊,順便起到引入課題,探索性質(zhì)后回應開頭的知識,也起到一定的教育作用。(請勇敢的同學配合老師)。
師:某某你出生的時間哪一年哪一月哪一日?(根據(jù)學生的回報板書兩次分子分母上下易位,同為比例的外項)。
你還想知道教師內(nèi)誰的生日,請他告訴你.(板書一次,做一個內(nèi)項,那么括號應該怎樣填呢)今天學習了比例的基本性質(zhì)我們就可以迅速的填出了。(板書:比例的基本性質(zhì))。
1.引用練習中的3:8=9:24為例子,比例中的四個數(shù)叫什么名字呢?兩端的兩項叫做什么,中間的兩項叫做什么?(自學課本)。
學生回報,師完成板書:
(注意板書的時候教師的手勢要指明確到位)。
2、練習:請指出下列比例的兩個外項和內(nèi)項各是多少?
2.4:1.6=60:40。
3、這么多的比例,每個比例的兩個外項和兩個內(nèi)項之間存在有什么共同的特點么?可以說的具體一些。
帶著問題小組內(nèi)展開討論。(教師可以參與當中若干組的活動)時間2分鐘。
4、小組匯報初步形成共識:在比例里,兩個外項的積等于兩個內(nèi)項的積,這叫做比例的基本性質(zhì)。(多找?guī)讉€小組發(fā)表意見)。
回到板書例題驗證:兩個外項的積是:3×24=72。
兩個內(nèi)項的積是:8×9=72。
5、拿出自己任意找的5個比例,驗證是否存在相同的特點。(請學生在展臺展示自己的5個比例,并說明外項和內(nèi)項的積情況)2明,如果出現(xiàn)不相等的,要觀察反例,說明兩個比組不成比例。
6、完成板書:在比例里,兩個外項的'積等于兩個內(nèi)項的積。
如果把比例寫成分數(shù)的形式呢,以板書的例子,寫成分數(shù)的形式,引入等號兩邊的分子和分母交叉相乘,所得的積相等。
(1)6:3和8:5(2)1∶5和0.8∶4。
(3)1/3:1/4和12∶9(4)1.2:3/和4/5:5。
(注意學生語言敘述的規(guī)范性:如1)兩個外項的積是6×3=18。
兩個內(nèi)項的積是3×8=24,18≠24,所以不能組成比例)。
2、在括號里填上適當?shù)臄?shù)。
(1)12:3=():5(2)():1/3=1/4:1/6。
(3)0.2:0.6=6:()(4)4:3=80:()。
3、用5、3、4、8這四個數(shù)組比例,看看你能組幾個?為什么?
4、把5、3、4、8這四個數(shù)換掉其中的一個,組成比例。
4、在例一個比中,兩個外項的積互為倒數(shù),其中的一個內(nèi)項是4/5,另一個內(nèi)項是()。
5、回顧矛盾沖突題目:9解決因為兩個外項乘積是1,所以兩個外項乘積是1,另一個數(shù)就是那個已知數(shù)據(jù)的倒數(shù)。
談一談通過這節(jié)課的學習你有哪些收獲?(質(zhì)疑,并完成課題總結(jié)),提出預習任務,(那么利用比的基本性質(zhì)如和求比例中的未知數(shù)呢,請自覺預習課本35頁的例題2和3)。
不等式基本性質(zhì)教學設計篇十九
《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學目標,教學重難點,教法學法,教學過程這五個方面談談我對這節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應用,所以對不等式的學習有著重要的實際意義。同時,不等式的基本性質(zhì)也為學生以后順利學習解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎,起到重要的奠基作用。
根據(jù)《新課程標準》的要求,教材的內(nèi)容兼顧我班學生的特點,我制定了如下教學目標:
知識與技能:
1.感受生活中存在的不等關(guān)系,了解不等式的意義。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學化的能力。
教學重難點:
不等式基本性質(zhì)教學設計篇一
1、理解和掌握比例的意義和基本性質(zhì),認識比例的各部分的名稱,體會數(shù)學的規(guī)律美。
2、利用比例知識解決實際問題。
3、培養(yǎng)學生自主參與的意識、主動探究的精神,激發(fā)學生的審美愉悅。培養(yǎng)學生進行初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維。
一、談話導入,創(chuàng)設情境:
出示cai課件(一張微型照片)。你能看出這是杭州哪一個景點的照片?的確,照片太小了,那現(xiàn)在老師將這張照片按一定比例放大一些,。由此出現(xiàn)一張平湖秋月的風景照。
我們的祖國方圓960萬平方公里,幅員遼闊卻能在一張小小的地圖上清晰可見各地位置。建筑設計師可將濱江四區(qū)的設計構(gòu)想展示在一張紙上。這些,都要用到比例的知識,我們今天就來學習有關(guān)比例的一些知識。
二、自主探究,學習新知。
(一)教學比例的意義。
1、8厘米。
出示。
6厘米。
4厘米。
3厘米。
(1)根據(jù)表中給出的數(shù)量寫出有意義的比。
(2)哪些比是相關(guān)聯(lián)的?
(3)根據(jù)以往經(jīng)驗,可將相等的兩個比怎樣?(用等號連接)。
教師并指出這些式子就是比例。
2、讓學生任意寫出比例,并讓學生用自己的語言描述比例的意義。
3、教師板書:表示兩個比相等的式子叫做比例。比例也可用分數(shù)形式表示。
4、寫出比值是1/3的兩個比,并組成比例。
1、比例和比有什么區(qū)別?
2、認識比例的各部分。
(1)讓學生自己取。
(2)組成比例的四個數(shù)叫做比例的項,兩端的兩項叫做比例的。
外項,中間的兩項叫做比例的內(nèi)項。
板書:8:6=4:3。
內(nèi)項。
外項。
(3)讓學生找出自己舉的比例的內(nèi)外項。
()。
12。
2
()。
=
(4)找出分數(shù)形式比例的內(nèi)外項位置又是怎樣的?
3、出示【啟迪學生思維,展開審美想象】。
(1)這個比例已知的是哪兩項,要求的又是哪兩項?學生試填。
(2)學生反饋,教師板書。
(3)你發(fā)現(xiàn)了什么?
(4)指導學生概括出比例的基本性質(zhì),并板書:在比例里,兩個外項之積等于兩個內(nèi)項之積。
4、用比例性質(zhì)驗證你所寫比例是否正確。
5、練習8:12=x:45。
0.5。
x
20。
32。
=
求比例中的未知項,叫做解比例。
如何證明你的解是正確的?
(三)小結(jié):今天這堂課你有什么收獲?
三、鞏固練習。
1、下面哪幾組中的兩個比可以組成比例。
4
1
12:24和18:36。
0.4:和0.4:0.15。
14:8和7:4。
5
2
2、根據(jù)18x2=9x4寫出比例?!倔w會到數(shù)學的邏輯美,規(guī)律美】。
3、從1、8、0.6、3、7五個數(shù)中。
(1)選出四個數(shù),組成比例。
(2)任意選出3個數(shù),再配上另一個數(shù),組成比例。
(3)用所學知識進行檢驗。
四、實際應用。
不久前,汪駿強家的菜地邊高高矗立起一個新鐵塔,這天午后,陽光明媚,鄰居家剛讀一年級的小明又拉著汪駿強來到鐵塔下,玩著玩著,小明問道:“強強哥哥,這鐵塔干嘛用?”“鐵塔嘛,架設高壓線用的,以后等電線架好了,可不能再來玩了,更不能攀登,高壓線可危險了!”“那這個鐵塔有多高壓呀?”
同學們,如果你是汪駿強,你準備怎么辦?
不等式基本性質(zhì)教學設計篇二
1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。
3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。
運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
聯(lián)系分數(shù)與除法的關(guān)系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。
多媒體課件長方形白紙、圓片,彩色筆等。
一、創(chuàng)設情境,激趣導入。
生1:四、五、六年級分的地一樣多。
生2:……。
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知。
1,小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2,匯報結(jié)果。
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。
生5:……。
3、課件展示,得出結(jié)論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結(jié)得到校長分的地一樣多。)。
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)。
師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?
生:相等。
師:同學們請看這組分數(shù)有什么特點?(板書=)。
生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。
生:分子分母同時乘2,……。
師:誰能用一句換來描述一下這個規(guī)律?
生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)。
師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?
生:分數(shù)的分子分母同時除以相同的數(shù)。
師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書分數(shù)的基本性質(zhì))。
生:0除外。
師:為什么0要除外?
生:因為分數(shù)的分母不能為0.
師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?
生:同時相同0除外。
師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?
生:商不變的性質(zhì)。
師:為什么?
生:我們學過分數(shù)與除法的關(guān)系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。
師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三:應用新知,練習鞏固。
(一)練一練。
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。
(二)判斷(搶答)。
1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。
2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。
3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。
(四)測一測。
1、把和都化成分母是10而大小不變的分數(shù)。
2、把和都化成分子是4而大小不變的分數(shù)。
3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?
四:總結(jié)。
1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)。
五:作業(yè)練習冊2、4題。
本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!
這樣的設計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。
本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經(jīng)驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。
在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。
不等式基本性質(zhì)教學設計篇三
《分數(shù)的基本性質(zhì)》是九年義務教育北師大版五年級上冊第三單元的內(nèi)容。
【設計理念】。
根據(jù)新課標的基本要求,我以培養(yǎng)學生的創(chuàng)新意識和實踐能力為重點,在教學中創(chuàng)設情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結(jié)果”的開放式教學流程。讓學生在問題情境中激活內(nèi)在要求,大膽猜想,使實驗成為內(nèi)在需求。通過觀察操作、經(jīng)歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。
【學情與教材分析】。
《分數(shù)的基本性質(zhì)》是北師大版小學數(shù)學教材五年級上冊第三單元《分數(shù)》的教學內(nèi)容,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是約分和通分的基礎,而約分和通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。學生之前已經(jīng)掌握了商不變的性質(zhì),在教學之后將其與分數(shù)的基本性質(zhì)進行聯(lián)系,有意識地加強分數(shù)與除法的關(guān)系,以便把舊知識遷移到新的知識中來。
【教學目標】。
1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。
3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。
【教學重點】運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
【教學難點】聯(lián)系分數(shù)與除法的關(guān)系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。
【教學準備】多媒體課件長方形白紙、圓片,彩色筆等。
【教學過程】。
一、創(chuàng)設情境,激趣導入。
生1:四、五、六年級分的地一樣多。
生2:……。
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知。
1,小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2,匯報結(jié)果。
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。
生5:……。
3、課件展示,得出結(jié)論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結(jié)得到校長分的地一樣多。)。
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)。
師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?
生:相等。
師:同學們請看這組分數(shù)有什么特點?(板書=)。
生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。
生:分子分母同時乘2,……。
師:誰能用一句換來描述一下這個規(guī)律?
生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)。
師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?
生:分數(shù)的分子分母同時除以相同的數(shù)。
師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的.新知識。(板書分數(shù)的基本性質(zhì))。
生:0除外。
師:為什么0要除外?
生:因為分數(shù)的分母不能為0.
師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?
生:同時相同0除外。
師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?
生:商不變的性質(zhì)。
師:為什么?
生:我們學過分數(shù)與除法的關(guān)系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。
師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三:應用新知,練習鞏固。
(一)練一練。
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。
(二)判斷(搶答)。
1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。
2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。
3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。
(四)測一測。
1、把和都化成分母是10而大小不變的分數(shù)。
2、把和都化成分子是4而大小不變的分數(shù)。
3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?
四:總結(jié)。
1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)。
五:作業(yè)練習冊2、4題。
【板書設計】。
給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
【教學反思】。
本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!
這樣的設計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。
本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經(jīng)驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。
在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。
不等式基本性質(zhì)教學設計篇四
1.理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。
3.較好實現(xiàn)知識教育與思想教育的有效結(jié)合。
理解和掌握分數(shù)的基本性質(zhì),并運用分數(shù)的基本性質(zhì)解決問題,進一步加深分數(shù)與除法之間的關(guān)系。
板書有關(guān)習題的幻燈片。
一、復習。
1.出示。
在括號里填上適當?shù)臄?shù):
指名說一說結(jié)果,并說一說你是根據(jù)什么填的?
二、課堂練習:
1.自主練習第4題。
學生先獨立做,教師巡視,并個別指導,集體訂正。
教師板書題目中的線段,指名讓學生板演。
在直線那些分數(shù)用同一個點表示是什么意思?(就是問哪幾個分數(shù)相等。)。
怎樣找出相等的分數(shù)?
讓學生自己找。集體訂正是要求學生說一說你是根據(jù)什么找出相等的分數(shù)的?
然后要求學生在書上把這幾個相應的點找出來。指名板演。
2.自主練習第5題。
先讓學生獨立做,教師巡視。個別指導。
指名說一說你的結(jié)果,并說一說你是根據(jù)什么填的。重點要求學生說清楚利用分數(shù)的基本性質(zhì)來進行填空。
教師根據(jù)學生的回答選擇幾個題目進行板書。
3.自主練習第6題。
先讓學生獨立做。教師巡視并個別指導。注意差生中出現(xiàn)的問題。
集體訂正。指名說一說自己的計算過程和結(jié)果。
教師根據(jù)學生的回答選擇幾個題目進行板書。
4.自主練習第7題。
學生獨立做。教師要求有困難的學生分組討論,教師個別指導。
集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據(jù)和理由。
5.自主練習第8題。
學生先獨立做。
不等式基本性質(zhì)教學設計篇五
1.理解比例的基本性質(zhì),認識比例的各部分名稱。2.能用比例的基本性質(zhì)正確判斷兩個比能否組成比例。學習重點理解比例的基本性質(zhì)。
一、復習(課件出示以下問題,指名學生回答)。
1、什么叫做比例?
2、什么樣的兩個比才能組成比例?
3、判斷下面的比,哪兩個比能組成比例?把組成的比例寫出來。3:918:303:61.8:0.92:49:27學生獨立完成后全班交流訂正。
判斷兩個比能不能組成比例,除了看比值是否相等,還有沒有其它的方法?這節(jié)課我們就一起來研究研究。
二、自主探索,體驗新知。(課件出示自學要求)。
1、自學要求:1)自學書第41頁的內(nèi)容,把重要的地方畫上線,不懂的問題用鉛筆標在書上。2)提示:可以結(jié)合以下問題進行自學:
(1)什么叫比例的項?比例中有幾個項?分別叫什么?(2)你能把比例改寫成分數(shù)形式嗎?改寫成分數(shù)后你還能找到比例的外項和內(nèi)項嗎?試試看.(3)比例的基本性質(zhì)是什么?你能用字母表示這個性質(zhì)嗎?根據(jù)比例的基本性質(zhì)如何判斷兩個比能不能組成一個比例.(4)小組中議一議并集體交流。
2、組織學生交流自學成果。1)試一試。
應用比例的基本性質(zhì),判斷下面的兩個比能否組成比例。如果能組成比例,把組成的比例寫出來,并指出比例的內(nèi)項和外項。
3:6和8:50.2:2.5和4:502)課件出示三組比例,讓學生填空。
三、鞏固練習。
課件出示練習題,學生練習。
四、課堂總結(jié)說一說本節(jié)課的收獲。
不等式基本性質(zhì)教學設計篇六
學習內(nèi)容分析:
“分數(shù)的基本性質(zhì)”是九年義務教育小學數(shù)學北師大版五年級上冊第三單元的內(nèi)容。它是在學生學習了分數(shù)的意義、分數(shù)大小的比較、商不變的性質(zhì)、分數(shù)與除法的關(guān)系的基礎上進行的,為以后學習約分、通分做準備。
學習者分析:
學生已掌握了分數(shù)的意義和商不變的性質(zhì),已具備一定的動手操作的能力和分析、概括能力,能用分數(shù)表示圖形的陰影部分,已具備一定的合作交流的意識和經(jīng)驗。
教學目標:
3:經(jīng)歷猜想、驗證、實踐等數(shù)學活動,合作學習能力得到提高,并進一步體驗數(shù)學學習的樂趣。
教學重點:
教學難點:
設計意圖:
“分數(shù)的基本性質(zhì)”在分數(shù)教學中占有重要的地位,它是約分,通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以,分數(shù)的基本性質(zhì)是本單元的教學重點之一,以前我曾經(jīng)聽過幾節(jié)這樣的課,感覺學生都比較容易理解,覺得這知識不難,用不著老師多講了,也就使整節(jié)課顯得有點單調(diào),枯燥。
基于以上原因,我在設計這節(jié)課時,大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。
教學過程:
一、復習舊知,引入新課。
1、直接寫出得數(shù):
(1)18÷6=(2)120÷40=(3)2÷3=—。
180÷60=12÷4=10÷15=—。
2、你能從前兩組題中回憶起商不變性質(zhì)嗎?(被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。)。
3、你能根據(jù)第三組題說出分數(shù)與除法的關(guān)系嗎?根據(jù)分數(shù)與除法的關(guān)系,將商不變性質(zhì)中的被除數(shù)、除數(shù)、商分別改為分子、分母、分數(shù)值后又怎么說?(分子和分母同時擴大或縮小相同的倍數(shù),分數(shù)值不變。)分數(shù)中是否真有這樣的規(guī)律呢?這節(jié)課我們就來探討這個問題。
(通過上述知識的復習,為下面溝通商不變性質(zhì)與分數(shù)基本性質(zhì)的聯(lián)系作準備。)。
二、小組合作,探究新知。
1、折一折,畫一畫。
師:請同學們拿出準備好的三張長方形紙片。
要求:1)將三張同樣大小的長方形紙片,分別平均分成4份、8份、16份。將第一張的3份畫上陰影,第二張的6份畫上陰影,第三張的12份畫上陰影。
2)用分數(shù)表示陰影部分,
3)將陰影部分剪下來進行比較,看看能發(fā)現(xiàn)什么?
2、匯報。(師將一份學生作品貼在黑板上),
請這一同學談談發(fā)現(xiàn):通過比較,三幅圖陰影部分面積一樣,因而三個分數(shù)一樣大。(師板書三個分數(shù)相等的式子)。
3、師出示例2的三幅圖。
4、請學生寫出表示陰影部分的分數(shù),再觀察三幅圖陰影部分面積,同樣得出三個分數(shù)一樣大的結(jié)論。
5、算一算。
2)學生先獨立思考,后小組里討論交流想法。
3)匯報。小組派代表匯報,教師根據(jù)匯報適當板書。
(通過折一折、畫一畫,培養(yǎng)學生的動手操作能力,同時給學生提供充分的感性材料,豐富他們的生活經(jīng)驗又可以激發(fā)學生的學習興趣。)。
三、概括性質(zhì),揭示課題。
1、師:哪位同學能用一句話把大家發(fā)現(xiàn)的規(guī)律概括出來呢?
2、師:像右邊那樣列式行嗎?=,為什么?你能將剛才概括出的規(guī)律修正一下嗎?(出示分數(shù)的基本性質(zhì),全班齊讀一遍。)。
3、師小結(jié):剛才我們所說的就是分數(shù)的基本性質(zhì),它在課本第四十三頁,請同學們翻開課本看一看,你有哪個地方要提醒大家注意的,請在課本上用筆標示出來。(全班再齊讀一遍)。
(讓學生概括分數(shù)的基本性質(zhì),培養(yǎng)學生的概括能力,通過分子分母同時乘以0,引導學生發(fā)現(xiàn)分母為0,分數(shù)沒有意義,以培養(yǎng)學生思維的縝密性,同時回應前面的復習練習。)。
四、解釋應用,強化認知。
2、第43頁試一試。
3、練一練。第44頁第4題。
4、判斷對錯。
(1)分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()。
(2)把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。()。
(3)3/4的分子乘3,分母除以3,分數(shù)的大小不變。()。
(4)10/24的分子加5,要使分數(shù)的大小不變,分母也必須加5。()。
5、數(shù)學游戲“你說我對”(圖略)。
(利用以上練習,運用所學的知識解決實際問題,提高解決問題的能力,培養(yǎng)應用意識。)。
四、小結(jié)回顧,評價激勵。
(復習所學知識和方法,加深認識,深化主題)。
六、布置作業(yè),拓展延伸。
課本第44頁第1、2、3題。(鞏固所學知識)。
不等式基本性質(zhì)教學設計篇七
教學目標:
1、讓學生理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
學習目標:
1、理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
重點難點:
2、讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
過程設計:
一、激情導入。
1、導入課題。
生讀故事。
2、明確目標。
理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系;并會應用分數(shù)的基本性質(zhì)。
3、預期效果。
達到教學目標。
二、民主導學。
任務一。
任務呈現(xiàn)。
動手操作驗證性質(zhì)。
自主學習。
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求。
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發(fā)現(xiàn)什么?
師:同位分工合作完成?,F(xiàn)在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發(fā)現(xiàn)?
請二至三位同學說一說。
生回答。師:現(xiàn)在你們知道孫悟空為什么笑了嗎?請同學回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數(shù)的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)。
下面請同學們把這個式子從左往右地觀察,看一下每個分數(shù)的分子分母怎樣變化?才得到下一個分數(shù)。
生:我發(fā)現(xiàn)了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
生回答:一個分數(shù)的分子分母同時擴大相同的倍數(shù),它們分數(shù)的大小不變。
請一至二名同學回答。
師板書:分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
請一同學回答,生:我們發(fā)現(xiàn)了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。
生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。(二名學生重復)。
師板書:或者除以。
師:你能根據(jù)剛才總結(jié)的規(guī)律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流。
師指著板書說明:我們說分子分母同時乘或除以相同的數(shù),分數(shù)的大小不變,那是不是包括所有的數(shù)呢?我們一起來看這樣一個分數(shù)。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)。
生:不成立,師:為什么。
生:因為0不能作除數(shù),師:0不能作除數(shù),所以這個式子是錯誤的。(畫叉)。
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)。
生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。
生:0除外。
師板書0除外。
生:同時和相同的數(shù)。
師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質(zhì)。(師板書課題)。
師:我相信如果當時豬八戒會這個分數(shù)的基本性質(zhì),那就不會出現(xiàn)這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。
生齊讀二遍。
師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。
任務二。
任務呈現(xiàn)。
課本76頁的例2,請一同學讀題。
自主學習。
生獨立完成,完成后和同位的同學說一說你是怎樣想的。
展示交流。
每題請二名同學回答,(集體訂正答案)。
檢測導結(jié)。
1、目標練習。
76頁“做一做”
練習十四的1、2、6、7題。
2、結(jié)果反饋。
生做完后同桌交流,再指名說說結(jié)果。
3、反思總結(jié)。
今天這節(jié)課你都學會了哪些知識?請大家談談學習了分數(shù)的基本性質(zhì)的收獲。
三、輔助設計。
教具課件設計。
小黑板正方形紙數(shù)塊。
板書設計。
練習和作業(yè)設計。
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結(jié):這節(jié)課我們學習了分數(shù)基本性質(zhì),而且我們還學會了根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)轉(zhuǎn)化成和它相等的另外一個分數(shù),其實生活當中還有許多的數(shù)學知識,如果你留心觀察,你就能夠發(fā)現(xiàn),我希望大家都能做一個在學習上面的有心人。
不等式基本性質(zhì)教學設計篇八
1.讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3.培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多?!?BR> 生乙:“我覺得小明分得多?!?BR> 生丙:“我覺得公平,他們?nèi)齻€分得一樣多。”
師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了?!?BR> 師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大?!?BR> 1.師:“下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了?!?BR> 首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)。
2.師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)。
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”
師:“那九分之三又是怎么得到的呢?大家一起說?!?BR> 生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三?!?BR> (學生說的同時,教師操作,分完后把圓片貼在黑板上。)。
3.師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
:原來三個圓的陰影部分是同樣大的。
師:“現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)。
生:“奶奶分月餅是公平的,因為他們?nèi)齻€分得的月餅一樣多。”
師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻€人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的?!?BR> 生乙:“這三個分數(shù)是相等的。”
師:“剛才的試驗證明,它們的大小是相等的?!保ò鍟?,打上等號)。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變?!?BR> 師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍?!?BR> 師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)。
“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說?!保▽W生討論后發(fā)言)。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結(jié)合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)。
1.學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術(shù)一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術(shù)。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結(jié)方法。
4.按規(guī)律寫出一組相等的分數(shù)。
不等式基本性質(zhì)教學設計篇九
1.使學生進一步理解比例的意義,懂得比例各部分名稱。2.經(jīng)歷探索比例基本性質(zhì)的過程,理解并掌握比例的基本性質(zhì)。3.能運用比例的基本性質(zhì)判斷兩個比能否組成比例?!窘虒W重點】比例的基本性質(zhì)。
2.應用比例的意義,判斷下面的比能否組成比例。6∶10和9∶15。
4.5∶1.5和10∶5教師結(jié)合回答說:剛才,你們是根據(jù)比例的意義先求出比值,再作出判斷的。老師不是這樣想的,可很快就判斷好了,想知道其中的秘密嗎?那學完今天的知識----比例的基本性質(zhì),老師的秘密對你來說就不是秘密了。
【設計意圖】注重從學生已有的知識出發(fā),為新課做好鋪墊。
二、自主探究。
三、反饋。
1.在四人小組里,將你的發(fā)現(xiàn)與同伴交流一下。
2.全班交流.(當學生說到比例的基節(jié)本性時,師引導學生探究驗證.)3.板書:在比例中,兩個外項的積等于兩個內(nèi)項的積。
【設計意圖】因為學生對比的知識了解甚多,在這一環(huán)節(jié),不是教師出示教材中的例子,而是讓學生自己舉例研究,使研究材料的隨機性大大增強,從而提高結(jié)論的可信度。這樣也能讓學生體會到歸納的過程,并滲透科學態(tài)度的教育。
五、鞏固練習。
1、應用比例的基本性質(zhì),判斷下面哪組中的兩個比能否組成比例(完成課本第41面的“做一做”)。
2、():4=6:()。
3、根據(jù)比例的基本性質(zhì),在()里填上適當?shù)臄?shù).(1)15∶3=():1(2)2∶0.5=1.2:()。
5.在a:3=8:b中()是內(nèi)項,a*b=()6.如果2a=7b(a,b不為零),那么a/b=()/()。
【設計意圖】練習主要是運用比例的基本性質(zhì)。要求學生講明理由,培養(yǎng)學生有根據(jù)思考問題的良好習慣,并與用比例的意義來判斷兩個比能不能組成比例形成對比;在填寫比例中未知數(shù)時,不僅要求學生說出理由,還要求學生進行檢驗,這樣培養(yǎng)學生良好的檢驗習慣和靈活解決問題的能力,培養(yǎng)良好的學習習慣,并且充分體現(xiàn)練習的層次性、開放性,讓孩子們發(fā)現(xiàn)比例的知識的奧妙。
六、通過本節(jié)課學習,你有什么收獲?還有什么疑問?
【設計意圖】關(guān)注學生知識與技能的掌握情況,并且留給孩子質(zhì)疑問難的空間。
七、布置作業(yè):
1、課本第43頁的第5題(全班完成)。
2、課本第44頁的第14題(學有余力的孩子完成)。
在比例里,兩個外項的積等于兩個內(nèi)項的積。這叫做比例的基本性質(zhì)。【板書設計意圖】這板書是為了突出重點,讓孩子能一目了然地看出比例各部分名稱以及兩個外項和兩個內(nèi)項的積到底是兩個數(shù)相乘。
不等式基本性質(zhì)教學設計篇十
1. 讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2. 根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3. 培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。
使學生理解分數(shù)的基本性質(zhì)。
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多?!?BR> 生乙:“我覺得小明分得多。”
生丙:“我覺得公平,他們?nèi)齻€分得一樣多?!?BR> 師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了。”
師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大?!?BR> 1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了?!?BR> 首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)
2. 師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二?!?BR> 師:“那九分之三又是怎么得到的呢?大家一起說?!?BR> 生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”
(學生說的同時,教師操作,分完后把圓片貼在黑板上。)
3. 師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
小結(jié):原來三個圓的陰影部分是同樣大的。
師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)
生:“奶奶分月餅是公平的,因為他們?nèi)齻€分得的月餅一樣多?!?BR> 師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻€人分的'月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的?!?BR> 生乙:“這三個分數(shù)是相等的?!?BR> 師:“剛才的試驗證明,它們的大小是相等的?!?板書,打上等號)
4. 研究分數(shù)的基本規(guī)律。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變?!?BR> 師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍?!?BR> 師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)
教師小結(jié):“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”
學生發(fā)言
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。(板題)
分數(shù)的基本性質(zhì)。
5. 深入理解分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說。”(學生討論后發(fā)言)
齊讀分數(shù)的基本性質(zhì),并用波浪線表出關(guān)鍵的詞。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結(jié)合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)
三、
1.學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術(shù)一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術(shù)。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結(jié)方法。
4.按規(guī)律寫出一組相等的分數(shù)。
這節(jié)課大家有什么收獲?
不等式基本性質(zhì)教學設計篇十一
1、了解比例各部分的名稱,探索并掌握比例的基本性質(zhì),會根據(jù)比例的基本性質(zhì)正確判斷兩個比能否組成比例,能根據(jù)乘法等式寫出正確的比例。
2、通過觀察、猜測、舉例驗證、歸納等數(shù)學活動,經(jīng)歷探究比例基本性質(zhì)的過程,滲透有序思考,感受變與不變的思想,體驗比例基本性質(zhì)的應用價值。
3、引導學生自主參與知識探究過程,培養(yǎng)學生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生的思維。
根據(jù)乘法等式寫出正確的比例。
多媒體課件。
本班的孩子基礎較差,很多孩子沒有養(yǎng)成好的學習習慣,好的思考方法,所以課堂上的重點放在了發(fā)現(xiàn)并概括出比例的基本性質(zhì)上。在比例的基本性質(zhì)應用時,重點突出孩子的思考過程,強調(diào)孩子有根據(jù)地思考,養(yǎng)成獨立思考的習慣。
一、舊知鋪墊導入。
2、比和比例有什么區(qū)別?
【設計意圖】。
注重從學生已有的知識出發(fā),為新課做好鋪墊。
二、自主探究。
過渡:同學們,比有各部位的名稱,把比組成比例后我們有了新的名稱,請自學課本第34頁。生閱讀后,請同學說出黑板上比例各部分的名稱。
【設計意圖】。
組成比例的四個數(shù)的名稱的認識對孩子們來說是比較簡單的,所以讓孩子們自學,培養(yǎng)孩子的自主學習能力,養(yǎng)成讀數(shù)學書的習慣。
三、反饋練習。
指出下面比例的外項和內(nèi)項。(投影出示)。
先小組之內(nèi)說一說,然后在指名回答。重點說分數(shù)形式的比例外項和內(nèi)項。
【設計意圖】。
這一環(huán)節(jié)重點學習組成一個比例的兩個比哪兩個數(shù)是外項,哪兩個數(shù)是內(nèi)項。重點突出分數(shù)形式下怎么去找比例的內(nèi)項和外項。
(1)投影出示幾組比例,讓學生觀察看看能有什么發(fā)現(xiàn)?細心的同學很快會發(fā)現(xiàn)這幾組比例數(shù)字相同,但是書寫位置不同。然后老師在質(zhì)疑,為什么這些比例里的四個數(shù)書寫位置不同卻能組成比例呢?請小組合作找個這個秘密。
(2)學生找出原因后,教師引導學生用一句話總結(jié)出來。并指出這叫做比例的基本性質(zhì),板書課題。
(3)繼續(xù)提出:是不是所有的比例都具有這樣的性質(zhì),舉例驗證,最后得出結(jié)論。
(4)比例寫出分數(shù)形式后,也就是等號兩端的分子分母交叉相乘,乘得的積也一定相等。
【設計意圖】。
這一環(huán)節(jié)我根據(jù)學生好奇的心理,用質(zhì)疑的方式來激發(fā)學生的學習興趣,讓學生主動去探索新知,這樣也能讓學生體會到總結(jié)歸納的過程,并滲透科學態(tài)度的教育。
五、鞏固練習。
1、應用比例的基本性質(zhì),判斷下面哪組中的兩個比能否組成比例(投影出示練習)。
2、應用比例的意義或者基本性質(zhì),判斷下面哪組中的兩個比可以組成比例。
(學生獨立完成后,用展示臺展示)。
3、根據(jù)比例的基本性質(zhì),在()里填上適當?shù)臄?shù)。(投影出示)。
六、全課總結(jié):
這節(jié)課你有什么收獲。
【設計意圖】。
關(guān)注學生知識與技能的掌握情況,并且留給孩子質(zhì)疑問難的空間。
七、拓展練習:把下面的等式改寫成比例。
3×40=8×15。
不等式基本性質(zhì)教學設計篇十二
教法與學法:
1.教學理念:“人人學有用的數(shù)學”
2.教學方法:觀察法、引導發(fā)現(xiàn)法、討論法.。
3.教學手段:多媒體應用教學。
4.學法指導:嘗試,猜想,歸納,總結(jié)。
根據(jù)《數(shù)學課程標準》的要求,教材和學生的特點,我制定了以下四個教學環(huán)節(jié)。
下面我將具體的教學過程闡述一下:
一、創(chuàng)設情境,導入新課。
上課伊始,我將用一個公園買門票如何才劃算的例子導入課題。
(此處學生是很容易得出買30張門票需要4x30=120(元),買27張門票需要5x27=135(元),由于120〈135,所以買30張門票比買27張還要劃算。由此建立了一個數(shù)與數(shù)之間的不等關(guān)系式)。
緊接著進一步提問:若人數(shù)是x時,又當如何買票劃算?
二、探求新知,講授新課。
引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量1205x的不等關(guān)系。那么在不等式概念提出之前,先讓學生回顧等式的概念,“類比”等式的概念,嘗試著去總結(jié)歸納出不等式的概念。使學生從一個低起點,通過獲得成功的體驗和克服困難的經(jīng)歷,增進應用數(shù)學的自信心,為下面的學習調(diào)動了積極。
接下來我用一組例題來鞏固一下對不等式概念的認知,把表示不等量關(guān)系的常用關(guān)鍵詞提出。
(1)a是負數(shù);
(2)a是非負數(shù);
(3)a與b的和小于5;
(4)x與2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3。
關(guān)鍵詞:非負數(shù),非正數(shù),不大于,不小于,不超過,至少。
難點突破:通過上面三組算式,學生已經(jīng)嘗試著歸納出不等式的三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點。在不等式性質(zhì)3用數(shù)探討出以后,換一個角度讓學生想一想,是否能在數(shù)軸上任取兩個點,用相反數(shù)的相關(guān)知識挖掘一下,乘以或除以一個負數(shù)時,任意兩個數(shù)比較是否性質(zhì)3都成立。通過“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對具體數(shù)的感知完成到字母代替數(shù)的升華。讓學生用實例對一些數(shù)學猜想作出檢驗,從而增加猜想的可信程度。同時,讓學生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
反饋練習:用一個小練習鞏固三條性質(zhì)。
如果ab,那么。
(1)a-3b-3(2)2a2b(3)-3a-3b。
提出疑問,我們討論性質(zhì)2,3是好象遺忘了一個數(shù)0。
引出讓學生歸納,等式與不等式的區(qū)別與聯(lián)系。
三、拓展訓練。
根據(jù)不等式基本性質(zhì),將下列不等式化為“”或“”的形式。
再次回到開頭的門票問題,讓學生解出相應的x的取值范圍。
四、小結(jié)。
1.新知識。
2.與舊知識的聯(lián)系。
五、作業(yè)的布置。
以上是我對這節(jié)課的教學的看法,希望各位專家指正。謝謝!
“讓學生主動參與數(shù)學教學的全過程,真正成為學習的主人”
不等式基本性質(zhì)教學設計篇十三
教學目的:使學生理解比的基本性質(zhì),掌握化簡比的方法。
教學重、難點:化簡比的方法。
教學過程:
一、復習。
1.除法中的商不變規(guī)律是什么?分數(shù)的基本性質(zhì)是什么?
2、比與除法、分數(shù)有什么關(guān)系?
3、求比值?5:15??4/5:8/15??0.8:0.12。
二、新授。
我們剛才復習了除法中商不變規(guī)律和分數(shù)的基本性質(zhì),又知道。
和除法、分數(shù)有著密切的聯(lián)系,比的前項相當于被除數(shù),比的。
項相當于除數(shù);比的前項也相當于分數(shù)的分子,比的后項相當。
分母。
那么在比中有什么樣的規(guī)律?讓學生自己討論初步說出結(jié)論。
比的前項和后項同時乘以或者同時除以相同的數(shù)(零除外)。
注意:為什么這里要同時乘以或除以相同的數(shù)不能是0?(因為如果乘以0,比的后項就變成了0,沒有意義。且0不能作除數(shù),更不能同時除以0)。
2.教學化簡比。
利用比的基本性質(zhì),我們可以把比化成最簡單的整數(shù)比。
出示例1:把下面各比化成最簡單的整數(shù)比。
(1)14:21??????(2)1/6:2/9??(3)1.25:2???。
(1)問:這道題的前項和后項都是什么數(shù)?怎樣才能使它化成最簡的整數(shù)比呢?(先讓學生自己討論解答,然后引導得出:要把它化成最簡整數(shù)比,就必須根據(jù)比的基本性質(zhì)把前、后項同時除以它們最大公約數(shù)7)。
(2)問:這是一道分數(shù)比,怎樣才能使它轉(zhuǎn)化成整數(shù)比?(讓學生自己動手做,后對照課本上的例題做法,對或者錯,共同完成后引導學生說出:要根據(jù)比的基本性質(zhì),把它的前后項同時乘以它們的分母的最小公倍數(shù)18,才能轉(zhuǎn)化成整數(shù)比)化成整數(shù)比以后,如果不是最簡的整數(shù)比,還要應用(1)題的方法繼續(xù)化簡。
(3)問:這道是小數(shù)比,怎樣化成整數(shù)比?(讓學生說說并自己解答。指導根據(jù)比的基本性質(zhì),把它的前后項同時乘以相同的數(shù),使它們轉(zhuǎn)化成整數(shù)比。如果這時還不是最簡整數(shù)比,要再除以前后項的最大公約數(shù),使它化為最簡整數(shù)比)。
(4)還有其它解法嗎?可根據(jù)學生所答具體分析,特別是分數(shù)比實際上可用是分數(shù)除法來計算化簡。
小結(jié):這節(jié)課我們學習了什么新知識?它的內(nèi)容是什么?還學會了什么?特別提示:化簡與求比值的得數(shù)有什么不同?(化簡的結(jié)果是一個比。求比值的結(jié)果是商,是一個數(shù))。
三、鞏固練習。
1.完成“做一做”的題目。
讓學生說一說化簡比的方法。
2.練習十二第5、7、8題。
3.練習十二第9題。
四、作業(yè)。練習十二第6、10題。
不等式基本性質(zhì)教學設計篇十四
1。讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2。根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3。培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多?!?BR> 生乙:“我覺得小明分得多。”
生丙:“我覺得公平,他們?nèi)齻€分得一樣多?!?BR> 師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了?!?BR> 師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大。”
1、師:“下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了?!?BR> 首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)。
2。師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)。
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一?!?BR> 生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二?!?BR> 師:“那九分之三又是怎么得到的呢?大家一起說?!?BR> 生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三?!?BR> (學生說的同時,教師操作,分完后把圓片貼在黑板上。)。
3。師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
:原來三個圓的陰影部分是同樣大的。
師:“現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)。
生:“奶奶分月餅是公平的,因為他們?nèi)齻€分得的月餅一樣多?!?BR> 師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻€人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的?!?BR> 生乙:“這三個分數(shù)是相等的。”
師:“剛才的試驗證明,它們的大小是相等的?!保ò鍟蛏系忍枺?。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變?!?BR> 師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍?!?BR> 師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)。
“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說。”(學生討論后發(fā)言)。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結(jié)合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)。
1、學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術(shù)一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術(shù)。
2、學生練習課本例題2,兩名學生在黑板上做。
3、學生自己小結(jié)方法。
4、按規(guī)律寫出一組相等的分數(shù)。
不等式基本性質(zhì)教學設計篇十五
“分數(shù)的基本性質(zhì)”是九年義務教育小學數(shù)學北師大版五年級上冊第三單元的內(nèi)容。它是在學生學習了分數(shù)的意義、分數(shù)大小的比較、商不變的性質(zhì)、分數(shù)與除法的關(guān)系的基礎上進行的,為以后學習約分、通分做準備。
學生已掌握了分數(shù)的意義和商不變的性質(zhì),已具備一定的動手操作的能力和分析、概括能力,能用分數(shù)表示圖形的陰影部分,已具備一定的合作交流的意識和經(jīng)驗。
3:經(jīng)歷猜想、驗證、實踐等數(shù)學活動,合作學習能力得到提高,并進一步體驗數(shù)學學習的樂趣。
“分數(shù)的基本性質(zhì)”在分數(shù)教學中占有重要的地位,它是約分,通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以,分數(shù)的基本性質(zhì)是本單元的教學重點之一,以前我曾經(jīng)聽過幾節(jié)這樣的.課,感覺學生都比較容易理解,覺得這知識不難,用不著老師多講了,也就使整節(jié)課顯得有點單調(diào),枯燥。
基于以上原因,我在設計這節(jié)課時,大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。
1、直接寫出得數(shù):
(1)18÷6=(2)120÷40=(3)2÷3=—。
180÷60=12÷4=10÷15=—。
2、你能從前兩組題中回憶起商不變性質(zhì)嗎?(被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。)。
3、你能根據(jù)第三組題說出分數(shù)與除法的關(guān)系嗎?根據(jù)分數(shù)與除法的關(guān)系,將商不變性質(zhì)中的被除數(shù)、除數(shù)、商分別改為分子、分母、分數(shù)值后又怎么說?(分子和分母同時擴大或縮小相同的倍數(shù),分數(shù)值不變。)分數(shù)中是否真有這樣的規(guī)律呢?這節(jié)課我們就來探討這個問題。
(通過上述知識的復習,為下面溝通商不變性質(zhì)與分數(shù)基本性質(zhì)的聯(lián)系作準備。)。
1、折一折,畫一畫。
師:請同學們拿出準備好的三張長方形紙片。
要求:1)將三張同樣大小的長方形紙片,分別平均分成4份、8份、16份。將第一張的3份畫上陰影,第二張的6份畫上陰影,第三張的12份畫上陰影。
2)用分數(shù)表示陰影部分,
3)將陰影部分剪下來進行比較,看看能發(fā)現(xiàn)什么?
2、匯報。(師將一份學生作品貼在黑板上),
請這一同學談談發(fā)現(xiàn):通過比較,三幅圖陰影部分面積一樣,因而三個分數(shù)一樣大。(師板書三個分數(shù)相等的式子)。
3、師出示例2的三幅圖,
4、請學生寫出表示陰影部分的分數(shù),再觀察三幅圖陰影部分面積,同樣得出三個分數(shù)一樣大的結(jié)論。
3、算一算。
2)學生先獨立思考,后小組里討論交流想法。
3)匯報。小組派代表匯報,教師根據(jù)匯報適當板書。
(通過折一折、畫一畫,培養(yǎng)學生的動手操作能力,同時給學生提供充分的感性材料,豐富他們的生活經(jīng)驗又可以激發(fā)學生的學習興趣。)。
1、師:哪位同學能用一句話把大家發(fā)現(xiàn)的規(guī)律概括出來呢?
2、師:像右邊那樣列式行嗎?=,為什么?你能將剛才概括出的規(guī)律修正一下嗎?(出示分數(shù)的基本性質(zhì),全班齊讀一遍。)。
3、師小結(jié):剛才我們所說的就是分數(shù)的基本性質(zhì),它在課本第四十三頁,請同學們翻開課本看一看,你有哪個地方要提醒大家注意的,請在課本上用筆標示出來。(全班再齊讀一遍)。
(讓學生概括分數(shù)的基本性質(zhì),培養(yǎng)學生的概括能力,通過分子分母同時乘以0,引導學生發(fā)現(xiàn)分母為0,分數(shù)沒有意義,以培養(yǎng)學生思維的縝密性,同時回應前面的復習練習。)。
2、第43頁試一試。
3、練一練。第44頁第4題。
4、判斷對錯。
(1)分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()。
(2)把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。()。
(3)3/4的分子乘3,分母除以3,分數(shù)的大小不變。()。
(4)10/24的分子加5,要使分數(shù)的大小不變,分母也必須加5。()。
4、數(shù)學游戲“你說我對”(圖略)。
(利用以上練習,運用所學的知識解決實際問題,提高解決問題的能力,培養(yǎng)應用意識。)。
(復習所學知識和方法,加深認識,深化主題)。
1、課本第44頁第1、2、3題。(鞏固所學知識)。
不等式基本性質(zhì)教學設計篇十六
教學目標:
1、讓學生理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
學習目標:
1、理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
重點難點:
2、讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關(guān)的問題。
過程設計:
一、激情導入。
1、導入課題。
生讀故事。
2、明確目標。
理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系;并會應用分數(shù)的基本性質(zhì)。
3、預期效果。
達到教學目標。
二、民主導學。
任務一。
任務呈現(xiàn)。
動手操作驗證性質(zhì)。
自主學習。
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求。
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發(fā)現(xiàn)什么?
師:同位分工合作完成?,F(xiàn)在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發(fā)現(xiàn)?
請二至三位同學說一說。
生回答。師:現(xiàn)在你們知道孫悟空為什么笑了嗎?請同學回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數(shù)的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)。
下面請同學們把這個式子從左往右地觀察,看一下每個分數(shù)的分子分母怎樣變化?才得到下一個分數(shù)。
生:我發(fā)現(xiàn)了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
生回答:一個分數(shù)的分子分母同時擴大相同的倍數(shù),它們分數(shù)的大小不變。
請一至二名同學回答。
師板書:分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
請一同學回答,
生:我們發(fā)現(xiàn)了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。
生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。(二名學生重復)。
師板書:或者除以。
師:你能根據(jù)剛才總結(jié)的規(guī)律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流。
師指著板書說明:我們說分子分母同時乘或除以相同的數(shù),分數(shù)的大小不變,那是不是包括所有的數(shù)呢?我們一起來看這樣一個分數(shù)。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)。
生:不成立,
師:為什么。
生:因為0不能作除數(shù),
師:0不能作除數(shù),所以這個式子是錯誤的。(畫叉)。
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)。
生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。
生:0除外。
師板書0除外。
生:同時和相同的數(shù)。
師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質(zhì)。(師板書課題)。
師:我相信如果當時豬八戒會這個分數(shù)的基本性質(zhì),那就不會出現(xiàn)這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。
生齊讀二遍。
師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。
任務二。
任務呈現(xiàn)。
課本76頁的例2,請一同學讀題。
自主學習。
生獨立完成,完成后和同位的同學說一說你是怎樣想的。
展示交流。
每題請二名同學回答,(集體訂正答案)。
檢測導結(jié)。
1、目標練習。
76頁“做一做”
練習十四的1、2、6、7題。
2、結(jié)果反饋。
生做完后同桌交流,再指名說說結(jié)果。
3、反思總結(jié)。
今天這節(jié)課你都學會了哪些知識?請大家談談學習了分數(shù)的基本性質(zhì)的收獲。
三、輔助設計。
教具課件設計。
小黑板正方形紙數(shù)塊。
板書設計。
練習和作業(yè)設計。
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結(jié):這節(jié)課我們學習了分數(shù)基本性質(zhì),而且我們還學會了根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)轉(zhuǎn)化成和它相等的另外一個分數(shù),其實生活當中還有許多的數(shù)學知識,如果你留心觀察,你就能夠發(fā)現(xiàn),我希望大家都能做一個在學習上面的有心人。
不等式基本性質(zhì)教學設計篇十七
1、使學生理解和掌握分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2、通過猜想、驗證、歸納、總結(jié)等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學思想。
3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。
經(jīng)歷質(zhì)疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的基本性質(zhì)。
本節(jié)課我綜合采用了談話法,情境創(chuàng)設法、引導探究法、直觀演示法,組織學生經(jīng)歷觀察,猜測,得出結(jié)論。
為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。
1、媒體準備:白板。
2、資源準備:ppt。
1、導入——課件出示問題-——喚醒舊知。
2、探究新知——ppt課件——突破重點、分解難點。
3、拓展延伸。
一、聯(lián)系舊知,質(zhì)疑引思。
1、在自然數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的自然數(shù)嗎?
2、在小數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?
3、在分數(shù)的范圍內(nèi),可以找到兩個大小相等但分子和分母又都不相同的分數(shù)嗎?
【喚醒學生已有知識經(jīng)驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力?!俊?BR> 二、自主操作,驗證猜想。
1、初步驗證。
(1)提出問題。
(2)匯報方法。
2、深入驗證:
(1)在紙上寫上一組你認為可能相等的分數(shù);
(2)用你喜歡的方法來證明。
(3)學生操作。
(4)匯報交流。
(1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?
(2)歸納概括,總結(jié)規(guī)律,揭示課題。
4、運用規(guī)律,完成例2。
(1)理解題意。
(3)獨立完成,交流匯報。
【給學生提供開放的探究空間,滿足學生的探索欲望?!?。
三、知識應用,鞏固提升。
1、判斷。
(1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。
(2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。
石泉縣城關(guān)第二小學。
賈從先的分子乘以3,分母除以3,分數(shù)的大小不變。
才能使分數(shù)的大小不變?
四、回顧總結(jié),完善認知。
通過本節(jié)課的學習,你有什么收獲?
1、課前準備不足,我用的20xx版做的,結(jié)果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。
2、教學機智不足,沒有關(guān)注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。
3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結(jié)束語言有歧義。
不等式基本性質(zhì)教學設計篇十八
1、使學生認識比例的“項”以及“內(nèi)項”和“外項”。
2、理解并掌握比例的基本性質(zhì),會應用比例的基本性質(zhì)正確判斷兩個比能否組成比例。
3、通過自主學習,讓學生經(jīng)歷探究的過程,體驗成功的快樂。
本課時設計,在“項”以及“內(nèi)項”和“外項”的認識的設計上,以學生在老師的引導下逐步理解比例的有關(guān)知識,是以教師講授為主。而在本課時第二大塊內(nèi)容,理解并掌握比例的基本性質(zhì),本課時設計中,為學生提供開放真實的問題,通過學生自主收集信息,嘗試探索規(guī)律,引導學生寫出不同比例,在此基礎上放手讓學生在觀察中發(fā)現(xiàn)、思考,引導學生主動探索比例的基本性質(zhì)。
1)3:8=9:()0.5:()=5:17。
制造沖突,也為后面的思考題做理論鋪墊,順便起到引入課題,探索性質(zhì)后回應開頭的知識,也起到一定的教育作用。(請勇敢的同學配合老師)。
師:某某你出生的時間哪一年哪一月哪一日?(根據(jù)學生的回報板書兩次分子分母上下易位,同為比例的外項)。
你還想知道教師內(nèi)誰的生日,請他告訴你.(板書一次,做一個內(nèi)項,那么括號應該怎樣填呢)今天學習了比例的基本性質(zhì)我們就可以迅速的填出了。(板書:比例的基本性質(zhì))。
1.引用練習中的3:8=9:24為例子,比例中的四個數(shù)叫什么名字呢?兩端的兩項叫做什么,中間的兩項叫做什么?(自學課本)。
學生回報,師完成板書:
(注意板書的時候教師的手勢要指明確到位)。
2、練習:請指出下列比例的兩個外項和內(nèi)項各是多少?
2.4:1.6=60:40。
3、這么多的比例,每個比例的兩個外項和兩個內(nèi)項之間存在有什么共同的特點么?可以說的具體一些。
帶著問題小組內(nèi)展開討論。(教師可以參與當中若干組的活動)時間2分鐘。
4、小組匯報初步形成共識:在比例里,兩個外項的積等于兩個內(nèi)項的積,這叫做比例的基本性質(zhì)。(多找?guī)讉€小組發(fā)表意見)。
回到板書例題驗證:兩個外項的積是:3×24=72。
兩個內(nèi)項的積是:8×9=72。
5、拿出自己任意找的5個比例,驗證是否存在相同的特點。(請學生在展臺展示自己的5個比例,并說明外項和內(nèi)項的積情況)2明,如果出現(xiàn)不相等的,要觀察反例,說明兩個比組不成比例。
6、完成板書:在比例里,兩個外項的'積等于兩個內(nèi)項的積。
如果把比例寫成分數(shù)的形式呢,以板書的例子,寫成分數(shù)的形式,引入等號兩邊的分子和分母交叉相乘,所得的積相等。
(1)6:3和8:5(2)1∶5和0.8∶4。
(3)1/3:1/4和12∶9(4)1.2:3/和4/5:5。
(注意學生語言敘述的規(guī)范性:如1)兩個外項的積是6×3=18。
兩個內(nèi)項的積是3×8=24,18≠24,所以不能組成比例)。
2、在括號里填上適當?shù)臄?shù)。
(1)12:3=():5(2)():1/3=1/4:1/6。
(3)0.2:0.6=6:()(4)4:3=80:()。
3、用5、3、4、8這四個數(shù)組比例,看看你能組幾個?為什么?
4、把5、3、4、8這四個數(shù)換掉其中的一個,組成比例。
4、在例一個比中,兩個外項的積互為倒數(shù),其中的一個內(nèi)項是4/5,另一個內(nèi)項是()。
5、回顧矛盾沖突題目:9解決因為兩個外項乘積是1,所以兩個外項乘積是1,另一個數(shù)就是那個已知數(shù)據(jù)的倒數(shù)。
談一談通過這節(jié)課的學習你有哪些收獲?(質(zhì)疑,并完成課題總結(jié)),提出預習任務,(那么利用比的基本性質(zhì)如和求比例中的未知數(shù)呢,請自覺預習課本35頁的例題2和3)。
不等式基本性質(zhì)教學設計篇十九
《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學目標,教學重難點,教法學法,教學過程這五個方面談談我對這節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應用,所以對不等式的學習有著重要的實際意義。同時,不等式的基本性質(zhì)也為學生以后順利學習解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎,起到重要的奠基作用。
根據(jù)《新課程標準》的要求,教材的內(nèi)容兼顧我班學生的特點,我制定了如下教學目標:
知識與技能:
1.感受生活中存在的不等關(guān)系,了解不等式的意義。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學化的能力。
教學重難點: