最新圓柱的體積教學(xué)設(shè)計反思(匯總17篇)

字號:

    教育是一種有意識地引導(dǎo)和培養(yǎng)人的思維、情感和行為的活動。在總結(jié)時,可以用單詞、短語或圖表來梳理思路。這些總結(jié)范文涵蓋了各種不同的主題和內(nèi)容,相信能夠滿足你的需求。
    圓柱的體積教學(xué)設(shè)計反思篇一
    冀教版《數(shù)學(xué)》六年級下冊第29—31頁。
    1.經(jīng)歷認識圓柱體積,探索圓柱體積計算公式及簡單應(yīng)用的過程。
    2.探索并掌握圓柱體積公式,能計算圓柱的體積。
    3.在探索圓柱體積的過程中,進一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。
    教學(xué)重點:探索并掌握圓柱體積公式,能計算圓柱的體積。
    教學(xué)難點:探索并掌握圓柱體積公式。
    教具準備:兩個不易直觀比較體積大小的圓柱桶,探索體積的課件。
    執(zhí)教者:張聰棉。
    教學(xué)時數(shù):一課時。
    一、情境導(dǎo)入。
    出示準備好的圓柱筒,同學(xué)們這兩個物體,哪個大一些,
    誰大就是指它的體積大,今天我們就學(xué)習(xí)--圓柱體的體積。
    師:看到課題你能想到哪些有關(guān)的數(shù)學(xué)知識?或想知道什么數(shù)學(xué)知識?
    體積的單位有立方米,立方分米,立方厘米。相鄰的單位之間的進率是1000。
    二、板書課題,出示學(xué)習(xí)目標。
    (一)圓柱的體積公式是怎樣推導(dǎo)出來的,
    三、出示自學(xué)指導(dǎo)。
    (二)觀察拼出的近似長方體和圓柱,你發(fā)現(xiàn)它們有什么關(guān)系?
    四、學(xué)生自學(xué)。
    學(xué)生看書自學(xué),教師巡視。
    五、學(xué)生試做。
    學(xué)生試做。
    1.底面積是25平方厘米,高4分米。
    2.底面半徑2分米,高10分米。
    3.底面直徑和高都是20米。
    判斷對錯。
    1.一個圓柱形水桶,它的容積也就等于它的表面積。()。
    2.一個長方體與一個圓柱,底面積相等,高相等,那么體積也相等。()。
    3.底面積不相等的兩個圓柱的體積一定不相等。()。
    5.計算一根圓柱形鋼材有多少立方分米,是鋼材的表面積。()。
    填空:
    1.把圓柱的底面平均分成許多相等的扇形,然后把圓柱切開,可以拼成一個近似的(。
    )。它的底面積等于圓柱的(),它的高就是圓柱的()。
    2.圓柱體積的計算公式是(),用字母表示是()。
    3.一個圓柱底面積是25cm2,高是4cm,體積是()cm3。
    4.一個圓柱底面半徑是2cm,高是10cm,體積是()cm3。
    六、議一議。
    (1)把圓柱體平均分成若干份,可以拼成一個()圖形?這兩個圖形的()相等。
    師:做完的同學(xué)看黑板上同學(xué)的做法,是否正確,如果有不同答案,可以上前面來改正。
    評議黑板上的數(shù)學(xué)題。
    小結(jié):這節(jié)課你學(xué)會了哪些知識?
    七、小測試。
    今天同學(xué)們的收獲一定不少,現(xiàn)在我們做個當(dāng)堂測驗,只寫答案不抄題,看誰又快又對(見測驗題)。
    一、填空(每題10分)。
    1.把圓柱的底面分成許多相等的扇形,然后把圓柱切開,可以拼成一個近似的()。這個長方體的底面積等于圓柱的(),高等于圓柱的()。因為長方體的體積等于()乘(),所以圓柱的體積等于()乘()。
    2.一個圓柱的底面積是80平方厘米,高是5厘米,體積是()平方厘米。
    3.一個圓柱的體積是21平方厘米,底面積是7平方厘米,高是()厘米。
    4.一個圓柱的底面積是25平方厘米,高是0.4分米,體積是()平方厘米。
    二、判斷(每題5分)。
    1.把一個圓柱截成兩個小圓柱,它的表面積和體積都增加了。()。
    2.如果兩個圓柱的體積相等,那么他們的高也相等。()。
    3.一個圓柱的底面半徑擴大2倍,高不變,它的體積擴大2倍。()。
    1.底面積10平方厘米,高15厘米。
    2.底面直徑和高都是20厘米。
    3.底面周長62.8厘米,高10厘米。
    四、一根長50分米的長方體鋼材,底面是一個邊長10分米的正方形。如果把它鍛造成底面面積是1000平方分米的圓柱形鋼材,這根圓柱鋼材的高是多少分米?(15分)。
    本節(jié)的教學(xué)重難點是:
    1.探索并掌握圓柱體積公式,能計算圓柱的體積。
    2.在探索圓柱體積的過程中,進一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。
    教學(xué)方法:我利用課件演示和實物演示來解決。讓學(xué)生學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想。
    成功之處:1.利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;。
    2.遵循學(xué)生的認知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);。
    3.正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達到預(yù)期效果.
    不足之處:1.個別學(xué)生還是對公式不會靈活應(yīng)用。
    2.練習(xí)題有些多,應(yīng)選擇一些有代表性的題,這樣小測驗就能有充足的時間了。
    3.關(guān)注學(xué)生的有些少,尤其是應(yīng)關(guān)注做錯的學(xué)生,應(yīng)知道為什么錯,及時在課堂評價出結(jié)果會更好。
    4.老師講得多,應(yīng)放手讓學(xué)生自己觀察自己處理自己總結(jié),會更好。
    圓柱的體積教學(xué)設(shè)計反思篇二
    年級組集體備課時會嘆氣。
    在走廊里碰頭時會感慨。
    嘆氣、感慨地主要原因就是:近期作業(yè)的錯誤率很高(特別是學(xué)困生)。
    這使我不免停下“匆匆的步伐”凝望著這些作業(yè)叉叉多的孩子。
    什么地方出問題了?
    一輪本子改下來錯誤有以下幾類。
    1、優(yōu)等生:列出一個長長的算式,直接得出錯誤的結(jié)果(看不出是哪一步出錯,反正計算錯)。
    4、不知靈活變通,一般來講3.14最好是最后再乘,這樣可以降低計算的復(fù)雜程度,減輕計算的強度;但部分學(xué)困生勇氣可嘉,不管那一套,列式中3.14在前面就先算;放在后頭就最后算,老實得可愛;當(dāng)你在講計算技巧的時候可愛的孩子們還在埋頭苦算,結(jié)果錯誤百出。
    1、學(xué)優(yōu)生:提出要求:不能一步得出結(jié)果,要脫式:關(guān)注做作業(yè)、打草稿的態(tài)度、習(xí)慣,養(yǎng)成草稿本清晰、數(shù)字清楚,可以避免匆忙之中抄錯數(shù)字導(dǎo)致整題出錯。
    2、中等生、學(xué)困生:
    (1)重視公式的熟練程度:通過演示、推導(dǎo)、同桌互說、單獨抽問、上黑板默寫等方法幫助夯實基礎(chǔ)。
    (3)重點強記:3.14*1=…………………3.14*9=常用計算結(jié)果,達到熟練程度,提高練習(xí)時的計算速度和正確率,也可以用于檢驗計算過程中的結(jié)果正確與否。
    (4)抓聽講習(xí)慣:要求要嚴格,教師針對問題進行分析、講評的時候,應(yīng)要求所有學(xué)生抬頭關(guān)注,集中精力聽講(往往這樣的時候?qū)W困生是不睬你的,要適當(dāng)?shù)暮八饋碚緜€1分多鐘,點一點他。),有了這個保證,講評的效果就有了,出錯的幾率就就會降低了。再結(jié)合以上措施,效果就會更好。
    有了措施,就需要有行動——老師的行動、學(xué)生的行動都要跟上,希望一段日子后會有好效果。
    也歡迎大家說說自己的好的做法,共同提高第二單元的質(zhì)量。
    圓柱的體積教學(xué)設(shè)計反思篇三
    我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。這樣學(xué)生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
    在課的設(shè)計上以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,在學(xué)生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握。
    圓柱的體積教學(xué)設(shè)計反思篇四
    生:就是求這個茶葉盒的容積。
    師:如果茶葉盒的厚度不計呢?生:那只要求這個茶葉盒的體積就可以了。
    師:怎樣求這個圓柱形茶葉盒的體積呢?如果我們會求圓柱的體積這個問題是不是就迎刃而解了?這節(jié)課我們就來探索如何計算圓柱的體積。(板書課題)。
    二、探索新知。
    1、大膽猜測一下:如何計算圓柱的體積?
    師:你能說一說你為什么這樣想嗎?
    生:因為長方體和正方體的體積都用底面積乘高來計算。
    師:為什么你會想到聯(lián)系正方體和長方體的體積公式呢?
    生:因為它們都是直柱體。
    2、師:說得好,那么究竟圓柱的體積是不是用底面積乘高來計算呢?下面我們就來驗證我們的猜想。請大家先獨立思考驗證方法,有了想法后在小組內(nèi)交流。
    3、學(xué)生小組活動。
    4、全班反饋:你們的猜想得到驗證了嗎?你們是如何驗證的?誰愿意上前面來為大家演示?師(出示圓柱體教具)。
    生:將圓柱體先切成若干塊,然后再重新拼成長方體。
    師:怎樣切,怎樣拼?
    生:沿底面直徑切開,然后再拼起來。
    生:(學(xué)生多人發(fā)表意見)…………。
    生:沿圓柱的底面直徑切開,使切面與底面垂直。這樣切分成若干個底面是扇形的立體圖形,再將這些切分下來的每一塊重新拼在一起,就可以拼成一個近似長方體的立體圖形。(學(xué)生在說的同時用教具將切、拼的過程演示給全班同學(xué)看)。
    生:分的份數(shù)越多,拼成的形體越接近于長方體。
    師:如果我們分成成百上千份,甚至更多,再拼起來,你想象一下它的形狀會怎么樣?
    生:就是長方體。
    師:這個圓柱體的體積和拼成的長方體的體積有什么關(guān)系?
    生:相等。
    師:(再用教具演示切、拼的過程,讓學(xué)生注意觀察)你還發(fā)現(xiàn)了什么?
    生:圓柱的底面積等于拼成的長方體的底面積。
    生:圓柱的高等于拼成的長方體的高。
    (多媒體演示)將圓柱切拼成一個長方體,突出強調(diào)圓柱的底面積與長方體底面積的關(guān)系,圓柱的高與長方體高的關(guān)系以及圓柱體體積與長方體體積的關(guān)系。引導(dǎo)學(xué)生口敘圓柱轉(zhuǎn)化成長方體,以及其底面積、高和體積的關(guān)系。
    師:誰來完整地敘述一下剛才多媒體演示的過程?
    生:將圓柱體切拼成一個長方體,這個長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高,長方體的體積等于圓柱的體積。因為長方體的體積等于底面積乘高,所以圓柱的體積也等于底面積乘高。
    (學(xué)生分組,相互口述以上轉(zhuǎn)化及圓柱體積計算公式得出的過程)。
    (學(xué)生分組口述以后,再請學(xué)生說一說圓柱體積計算公式的推導(dǎo)過程)。
    教師板書:v=s底×h=s底h。
    5、理解公式,解決開課問題。
    手指v=s底×h=s底h,要想求出體積,必須知道哪兩個量?
    生:底面積和體積。
    師:現(xiàn)在你能幫小英算出茶葉的體積了吧。
    出示習(xí)題。
    三、小結(jié)與質(zhì)疑。
    解決了上面兩個小問題,你想說什么?
    生:無論怎樣,都要先求出底面積。師:對于圓柱體的體積計算,同學(xué)們還有什么問題嗎?生:沒有。
    師:完全正確,那我們現(xiàn)在就來計算圓柱的體積。
    四、鞏固練習(xí)。
    讓學(xué)生先自己獨立地做,一人板算,然后訂正。
    師:同學(xué)們的解答非常好,正確率非常高,希望在以下的練習(xí)中再接再厲。
    (二)、判斷,錯的請改正過來。
    1、一個圓柱體鐵罐,底面直徑是2米,高3米,求它的體積,列式為:3.14×2×3。
    2、圓柱的底面周長擴大2倍,高不變,圓柱的體積擴大4倍。
    3、圓柱的底面直徑是4dm,正方體的棱長也是4dm,它們的高相等,則圓柱的體積大。
    學(xué)生獨立判斷,反饋時手勢判斷,并說明理由和圖和改正。
    (三)、靈活應(yīng)用。
    學(xué)生獨立做題,反饋:你怎么想到底面積如何求?
    訂正,針對學(xué)生板演的錯誤(如應(yīng)先換算單位再算,而學(xué)生卻忽略了)提示學(xué)生注意審題等。
    生:根據(jù)體積公式推導(dǎo)出來的。
    學(xué)生獨立做題,反饋:這道題會用到哪個公式?體積怎么得來的?
    生:用的是推導(dǎo)公式,高等于體積除以底面積,體積和圓柱形柱子的體積是一樣的。
    (四)、思考題。
    一個圓柱形谷堆高1.2米,占地15平方米,每立方米稻谷約重600千克,
    把這些稻谷裝進糧倉里,正好占這個糧倉的3/5,若將糧倉裝滿,則能夠。
    存放稻谷約多少千克?
    五、全課總結(jié)。
    師:這節(jié)課我們學(xué)了什么內(nèi)容?你有什么收獲?
    生:這節(jié)課我們學(xué)習(xí)了圓柱的體積,知道了圓柱的體積計算方法,…………。
    師:同學(xué)們總結(jié)得很好。這節(jié)課就上到這。
    圓柱的體積教學(xué)設(shè)計反思篇五
    2、提問:“能用一句話說說什么是圓柱的體積嗎?”
    (學(xué)生互相討論后匯報,教師設(shè)疑)。
    1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
    (1)、先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?
    (2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進水中,比較哪個水面升得高。
    (3)、讓學(xué)生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結(jié)果填入實驗報告1中。(課件出示)。
    (4)、學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
    2、大膽猜想,感知體積公式,確定探究目標。
    (1)、再次設(shè)疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計算圓柱的體積。
    (2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
    (3)、讓學(xué)生思考:怎樣計算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
    (4)、學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
    (5)、讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)。
    4、確定方法,探究實驗,驗證體積公式。
    (1)、首先要求學(xué)生利用實驗工具,自主商討確定研究方法。
    (2)、學(xué)生通過討論交流確定了兩種驗證方案。
    方案一:將圓柱c放入水中,驗證圓柱c的體積。
    方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
    (3)、學(xué)生按照自己所設(shè)想的方案動手實驗,并記錄有關(guān)數(shù)據(jù),填入實驗報告2中。
    (5)、學(xué)生匯報:實驗的結(jié)果與猜想的結(jié)果基本相同。
    (6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。
    (7)、小結(jié):
    要想求出一個圓柱的體積,需要知道什么條件?
    (8)、學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
    學(xué)生反饋自學(xué)情況:
    v=sh。
    1、課件出示例4,學(xué)生獨立完成。
    指名說說這樣列式的依據(jù)是什么。
    2、鞏固反饋。
    3、完成第9頁的“試一試”和練一練”中的兩道題。
    (“練一練”只列式,不計算)。
    集體訂正,說一說圓柱體的體積還可以怎樣算?
    5、拓展練習(xí)。
    (1)、一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))。
    談?wù)勥@節(jié)課你有哪些收獲。
    教學(xué)內(nèi)容:人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)》(第十二冊)圓柱體積。
    教學(xué)目標:
    1、結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
    2、讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
    3、通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
    教學(xué)重點:掌握和運用圓柱體積計算公式。
    教學(xué)難點:圓柱體積計算公式的推導(dǎo)過程。
    圓柱的體積教學(xué)設(shè)計反思篇六
    在教學(xué)圓柱的體積時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)課的教學(xué),我覺得成功之處有以下幾個方面:
    圓柱的體積的導(dǎo)入,在回憶了長方體、正方體體積計算方法,并強調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過的圖形呢?”激發(fā)學(xué)生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過度自然,易接受新知。
    學(xué)生在探究新知時,教師要給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,學(xué)生親身參與操作,先用小刀把一根火腿腸切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,()圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的長相當(dāng)于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導(dǎo)出圓柱體積的計算公式。
    為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導(dǎo)圓柱體積公式的過程中,要求學(xué)生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學(xué)生雖然能說出“拼成的物體越來越接近長方體?!钡牵降灼闯傻膱D形怎樣更接近長方體?演示動畫后,學(xué)生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。
    為了培養(yǎng)學(xué)生解題的靈活性,進行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
    圓柱的體積教學(xué)設(shè)計反思篇七
    用已學(xué)的圓柱體積知識解決生活中的實際問題,并滲透轉(zhuǎn)化思想。
    經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,讓學(xué)生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗“等積變形”的轉(zhuǎn)化過程。
    通過實踐,讓學(xué)生在合作中建立協(xié)作精神,并增強學(xué)生“用數(shù)學(xué)”的意識。
    教學(xué)重點:利用所學(xué)知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
    教學(xué)難點:轉(zhuǎn)化前后的溝通。
    每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
    問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?
    2.揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題。)。
    【設(shè)計意圖】通過復(fù)習(xí)圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識上的準備。
    1.創(chuàng)設(shè)情境,提出問題。
    每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
    教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學(xué)問題嗎?(隨機板書)。
    預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)。
    預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)。
    預(yù)設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)。
    2.你覺得你能輕松解決什么問題?
    (1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)。
    學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
    教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)。
    小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準備好直尺,或許等會兒有用哦!
    (2)預(yù)設(shè)2:喝了多少水?
    學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
    教師:當(dāng)物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
    教師相機引導(dǎo):能否將空氣部分變成一個規(guī)則的立體圖形呢?
    學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
    引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)。
    (3)怎么求這個礦泉水瓶的容積?引導(dǎo)學(xué)生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。
    【設(shè)計意圖】課本中的例題呈現(xiàn)如下,
    例題是直接呈現(xiàn)轉(zhuǎn)化方法的,我是想先屏蔽相關(guān)數(shù)據(jù)信息和方法,通過激發(fā)學(xué)生解決問題的內(nèi)在需求,根據(jù)自己的生活學(xué)習(xí)經(jīng)驗來想辦法解決,才有了對數(shù)學(xué)情境的改編,以期通過轉(zhuǎn)化、觀察、對比,讓學(xué)生發(fā)現(xiàn)倒置前后兩部分立體圖形之間的相同點,溝通兩部分體積之間的內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,分散了難點,從而找到解決問題的方法。
    3.小組合作,測量計算。
    (礦泉水瓶內(nèi)直徑為6cm)。
    教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!
    (1)課件出示:
    一個內(nèi)直徑是()的瓶子里,水的高度是(),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是()。這個瓶子的容積是多少?(測量時取整厘米數(shù))。
    (2)四人小組合作:
    a.組長安排好分工:
    要量出所需數(shù)據(jù),其他組員要監(jiān)督好測量方法與結(jié)果是否正確,要按要求把題目填完整。
    b.組內(nèi)互相說一說:倒置前后哪兩部分的體積不變?
    礦泉水瓶的容積=()+()。
    c.做好以上準備工作后,利用所得數(shù)據(jù)獨立計算,再組內(nèi)校對結(jié)果是否正確。
    【設(shè)計意圖】這一環(huán)節(jié)讓學(xué)生大膽動手操作,在實踐中不斷發(fā)現(xiàn)解決問題,在同伴的交流中拓展自己的思維,讓學(xué)生在合作中建立協(xié)作精神。
    4.交流反饋。
    教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學(xué)板演。
    瓶中水高度為6厘米的:
    3.14×(6÷2)2×6+3.14×(6÷2)2×13。
    =3.14×9×(6+13)。
    ≈537(毫升)。
    瓶中水高度為7厘米的:
    3.14×(6÷2)2×7+3.14×(6÷2)2×12。
    =3.14×9×(7+12)。
    ≈537(毫升)。
    瓶中水高度為8厘米的:
    3.14×(6÷2)2×8+3.14×(6÷2)2×11。
    =3.14×9×(8+11)。
    ≈537(毫升)。
    瓶中水高度為9厘米的:
    3.14×(6÷2)2×9+3.14×(6÷2)2×10。
    =3.14×9×(9+10)。
    ≈537(毫升)。
    教師:出示某品牌礦泉水瓶的標簽,上面寫著凈含量為550毫升,基本符合。
    5.解答正確嗎?
    教師引導(dǎo)學(xué)生回顧反思:剛才我們是怎樣解決問題的?
    小結(jié):根據(jù)具體情況選擇合適的轉(zhuǎn)化方法,像這樣不規(guī)則立體圖形的體積可以轉(zhuǎn)化為規(guī)則的立體圖形來計算。
    【設(shè)計意圖】通過回顧解決問題的過程,幫助學(xué)生把本環(huán)節(jié)的數(shù)學(xué)活動經(jīng)驗進行總結(jié),引導(dǎo)學(xué)生在后續(xù)的學(xué)習(xí)中碰到相似的問題也可同樣利用轉(zhuǎn)化的思想來解決。
    1.?dāng)?shù)學(xué)書p27做一做。
    (1)學(xué)生獨立思考,解決問題。
    (2)把自己的想法與同桌說一說。
    (3)交流反饋:重點交流如何轉(zhuǎn)化,倒置后哪兩部分體積不變?
    求小明喝了多少水實際上是求礦泉水瓶上面無水部分的體積,這部分為不規(guī)則的立體圖形。
    將水瓶倒置后不規(guī)則容器轉(zhuǎn)化成了圓柱:該圓柱體積=小明喝了的水。
    3.14×(6÷2)2×10=282.6(毫升)。
    (1)請學(xué)生計算,并反饋訂正。
    (2)反饋要點:
    整個吊瓶容積=圖像中空氣部分的容積+還剩下液體的體積。
    根據(jù)圖象,可以得出在第12分鐘吊瓶有80毫升是空的。
    剩下液體的體積=100-2.5×12=70(毫升)。
    即整個吊瓶容積=80+70=150(毫升)。
    【設(shè)計意圖】從生活中常見的吊瓶問題引出,感受數(shù)學(xué)與生活的密切聯(lián)系,能根據(jù)圖像提取解決問題的有效信息,既提升了所學(xué)知識,又關(guān)注了學(xué)生的思考,培養(yǎng)學(xué)生的分析、解決問題能力。
    (2)討論方法:
    a.重疊:假設(shè)把兩個大小一樣的斜截體拼成一個底面周長為9.42厘米,高為(4+6)厘米的圓柱,這個立體圖形的體積是新圓柱體積的一半。
    b.切割:把這個立體圖形分為兩部分,下面是一個底面周長為9.42厘米,高為4厘米的圓柱體,上面是一個高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。
    (3)用自己認可的方法計算,并進行反饋。
    解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
    解法二:3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
    (4)反饋小結(jié):可以有不同的轉(zhuǎn)化方法來解決問題。
    【設(shè)計意圖】不滿足于一種方法的轉(zhuǎn)化,展示多種方法,開拓學(xué)生的思維。
    教師:回憶一下,今天這節(jié)課有什么收獲?
    教師和學(xué)生共同小結(jié):求不規(guī)則的立體圖形的體積可以將它轉(zhuǎn)化成為規(guī)則的立體圖形,這節(jié)課我們主要是將不規(guī)則的立體圖形轉(zhuǎn)化成為圓柱,用圓柱的體積計算方法來解決問題。
    在解決問題時,主要要弄清楚轉(zhuǎn)化前后兩部分之間的關(guān)系。
    【設(shè)計意圖】通過小結(jié),讓學(xué)生自主地對回顧本課所學(xué)知識進行梳理總結(jié),通過歸納與提煉,讓學(xué)生明確轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的重要性。
    圓柱的體積教學(xué)設(shè)計反思篇八
    2、提問:“能用一句話說說什么是圓柱的體積嗎?”
    (學(xué)生互相討論后匯報,教師設(shè)疑)。
    二、自主探究、
    1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
    (1)先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?
    (2)提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進水中,比較哪個水面升得高。
    (3)讓學(xué)生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結(jié)果填入實驗報告1中。(課件出示)。
    (4)學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
    2、大膽猜想,感知體積公式,確定探究目標。
    (1)再次設(shè)疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計算圓柱的體積。
    (2)引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
    (3)讓學(xué)生思考:怎樣計算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
    (4)學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
    (5)讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)。
    4、確定方法,探究實驗,驗證體積公式。
    (1)首先要求學(xué)生利用實驗工具,自主商討確定研究方法。
    (2)學(xué)生通過討論交流確定了兩種驗證方案。
    方案一:將圓柱c放入水中,驗證圓柱c的體積。
    方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
    (3)學(xué)生按照自己所設(shè)想的方案動手實驗,并記錄有關(guān)數(shù)據(jù),填入實驗報告2中。
    (5)學(xué)生匯報:實驗的結(jié)果與猜想的結(jié)果基本相同。
    (6)教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。
    (7)小結(jié):
    要想求出一個圓柱的體積,需要知道什么條件?
    (8)學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
    學(xué)生反饋自學(xué)情況:
    v=sh。
    三、鞏固發(fā)展。
    1、課件出示例4,學(xué)生獨立完成。
    指名說說這樣列式的依據(jù)是什么。
    2、鞏固反饋。
    3、完成第9頁的“試一試”和練一練”中的兩道題。
    (“練一練”只列式,不計算)。
    集體訂正,說一說圓柱體的體積還可以怎樣算?
    5、拓展練習(xí)。
    (1)一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))。
    四、全課小結(jié):
    談?wù)勥@節(jié)課你有哪些收獲。
    圓柱的體積教學(xué)設(shè)計反思篇九
    教學(xué)過程:。
    一、情境激趣?導(dǎo)入新課。
    2、提問:“能用一句話說說什么是圓柱的體積嗎?”(板書課題)。
    二、自主探究,學(xué)習(xí)新知。
    (一)設(shè)疑。
    1、從剛才的實驗中你有辦法得到這個圓柱學(xué)具的體積嗎?
    2、再出示一個用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?
    3、如果要求大廳內(nèi)圓柱的體積,或壓路機前輪的體積,還能用剛才的方法嗎?(生搖頭)。
    (二)猜想。
    1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?
    2、大家再來大膽猜測一個,圓柱的體積公式可能是什么?說說你的理由?
    (三)驗證。
    1、為了證實剛才的猜想,我們可以通過實驗來驗證。怎樣進行這個實驗?zāi)??結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗,說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)。
    2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報交流)。
    3、指名兩位學(xué)生上臺用圓柱體積教具進行操作,把圓柱體轉(zhuǎn)化為近似的長方體。
    4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時,拼成的圖形越接近長方體。
    5、通過上面的觀察小組討論:
    (1)圓柱體通過切拼后,轉(zhuǎn)化為近似的長方體,什么變了?什么沒變?
    (2)長方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
    (3)長方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
    (生匯報交流,師根據(jù)學(xué)生講述適時板書。)。
    小結(jié):把圓柱體轉(zhuǎn)化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因為長方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是v=sh。
    6、同桌相互說說圓柱體積的推導(dǎo)過程。
    7、完成“做一做”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習(xí)展示并評價)。
    8、求圓柱體積要具備什么條件?
    9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學(xué)生討論交流)。
    小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。
    10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個圓柱的體積?(測不同數(shù)據(jù)計算)。
    11、練一練:列式計算求下列各圓柱體的體積。
    (1)底面半徑2cm,高5cm。
    (2)底面直徑6dm,高1m。
    (3)底面周長6.28m,高4m。
    三、練習(xí)鞏固?拓展提升。
    1、判斷正誤:
    (1)等底等高的圓柱體和長方體體積相等?!?)。
    (2)一個圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。.....(?)。
    (3)圓柱的底面積越大,它的體積就越大。............(??)。
    (4)一個圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。......(??)。
    四、全課總結(jié)?自我評價。
    通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?
    教學(xué)目標:
    1.結(jié)合實際讓學(xué)生探索并掌握圓柱體積的計算方法,能正確運用公式解決簡單的實際問題。
    2.讓學(xué)生經(jīng)歷觀察、猜想、驗證等數(shù)學(xué)活動過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
    3.通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。
    教學(xué)重點:理解并掌握圓柱體積計算公式,并能應(yīng)用公式計算圓柱的體積。
    教學(xué)準點:掌握圓柱體積公式的推導(dǎo)過程。
    教學(xué)準備:圓柱的體積演示教具、多媒體課件、圓柱實物2個(一個為橡皮泥)、水槽、水。
    圓柱的體積教學(xué)設(shè)計反思篇十
    在進行圓柱的體積的導(dǎo)入時,課本上是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,那么再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜,《圓柱體積》教學(xué)反思。
    猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗,理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。
    二、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)。
    根據(jù)課標要求:學(xué)生進行數(shù)學(xué)探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份,還可以再多一些),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生如果沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學(xué)階段立體圖形的教學(xué)難點,學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
    三、練習(xí)時,要形式多樣,層層遞進。
    例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。在鞏固練習(xí)中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計算圓柱體積的方法。練習(xí)方式可以是填空、選擇、判斷、看圖計算、應(yīng)用題等。達到掌握。
    圓柱的體積教學(xué)設(shè)計反思篇十一
    今天第一節(jié)課荊校長和建英聽了我講的《圓柱的體積》,提出了幾點我應(yīng)該注意和改進的地方。
    一是,要注重課前的預(yù)習(xí),圓柱的體積一課復(fù)習(xí)舊知環(huán)節(jié),需要學(xué)生回顧什么是體積,長方體正方體體積公式,回顧轉(zhuǎn)化的方法推導(dǎo)圓面積計算公式,需要回顧的舊知較多,所以可以課前設(shè)計成幾個問題讓學(xué)生預(yù)習(xí),就可以避免課上學(xué)生由于對知識的遺忘,而浪費時間,影響課堂的高效。
    二是,猜想圓柱的體積可能與什么有關(guān)這個環(huán)節(jié),由于注重讓學(xué)生猜想,感受,體驗,并通過媒體演示驗證猜想的正確性,有些浪費時間。
    三是,推導(dǎo)體積公式環(huán)節(jié),我讓學(xué)生利用拆好的圓柱學(xué)具,兩人合作,圍繞三個問題進行探究“圓柱可以轉(zhuǎn)化為我們學(xué)過的哪個立體圖形,轉(zhuǎn)化后的圖形與圓柱之間有怎樣的.關(guān)系,利用這樣的關(guān)系可以推導(dǎo)出怎樣的公式”,學(xué)生合作的成果需要通過語言表達出來,所以之后的展示匯報環(huán)節(jié),我叫了三個學(xué)生上臺按照提示的三個問題完整的表述,最后有全體齊說,沒有讓學(xué)生再互相說一說,在說中再去感受推導(dǎo)的過程,我覺得這也是我欠缺的地方。
    四是,練習(xí)反饋環(huán)節(jié),我依據(jù)學(xué)生推導(dǎo)出的四個公式,先讓學(xué)生看著這些公式說一說,求圓柱的體積需要知道什么條件,學(xué)生說出了四種情況:知道了半徑和高求體積;知道了周長和高求體積;知道了底面積和高求體積;知道了直徑和高求體積。我順勢出了四道這樣的練習(xí)題讓學(xué)生在本上完成并集體訂正,感覺練習(xí)的量不夠。
    通過這節(jié)課,從荊校長和建英的評課中,我體會到要想提高課堂效率,首先,抓好課前預(yù)習(xí),其次,注重用多種方式讓學(xué)生多說而且要說透,最后,注意各環(huán)節(jié)時間分配要合理,做到心中有數(shù)。還有就是要加大練習(xí)量,關(guān)注到每一個學(xué)生,對學(xué)生學(xué)習(xí)效果掌握程度做到了如指掌。
    圓柱的體積教學(xué)設(shè)計反思篇十二
    掌握圓柱的體積計算公式,能夠正確計算圓柱的體積。
    【過程與方法】。
    通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
    【情感態(tài)度價值觀】。
    感受數(shù)學(xué)與生活的聯(lián)系,激發(fā)學(xué)習(xí)興趣,提高學(xué)習(xí)數(shù)學(xué)的自信心。
    【教學(xué)重點】。
    【教學(xué)難點】。
    (一)引入新課。
    提問:長方體和正方體的體積公式是什么?
    (正方體)體積=底面積×高。今天我們再來研究另一個熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
    (二)探索新知。
    在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。
    提問:長方體和正方體的體積相等嗎?
    預(yù)設(shè):根據(jù)長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。
    預(yù)設(shè):圓柱的體積和底面積、高有關(guān),圓柱的體積公式=底面積×高。
    預(yù)設(shè):可以把圓柱轉(zhuǎn)換成長方體。
    預(yù)設(shè):學(xué)生分一分,拼一拼,組合成近似長方體的圖形。此時教師應(yīng)借助多媒體設(shè)備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長方體。
    組織學(xué)生進行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關(guān)系?5分鐘后請小組代表進行回答。
    預(yù)設(shè):長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
    提問:圓柱的體積公式是什么?
    用大寫字母v表示圓柱的體積,s表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
    預(yù)設(shè):v=sh。
    教師強調(diào)字母v、s是大寫,h是小寫。
    追問:回顧探究圓柱體積公式的過程,有哪些心得體會?
    預(yù)設(shè)1:可以用長方體體積公式推導(dǎo)出圓柱體體積公式;
    預(yù)設(shè)2:把圓柱轉(zhuǎn)化成長方體,與探索圓面積的方法類似;
    預(yù)設(shè)3:計算長方體、正方體、圓柱的體積都可以用底面積乘高。
    (三)課堂練習(xí)。
    試一試。
    一個圓柱形零件,底面半徑是5厘米,高是8厘米。這個零件的體積是多少立方厘米?
    (四)小結(jié)作業(yè)。
    提問:通過本節(jié)課的學(xué)習(xí)有什么收獲?
    課后作業(yè):找找生活當(dāng)中的圓柱物體,量一量底面積和高,算一算物體體積。
    圓柱的體積教學(xué)設(shè)計反思篇十三
    1、運用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解其推導(dǎo)過程。
    2、會用圓柱的體積計算公式計算圓柱形物體的體積或容積。
    3、引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)方法,培養(yǎng)學(xué)生解決實際問題的能力。
    4、借助遠程教育的課件資源演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
    圓柱體體積計算公式的推導(dǎo)過程。
    《數(shù)學(xué)課程標準》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式?!奔匆笪覀冊诮虒W(xué)中,要讓學(xué)生通過自主的知識建構(gòu)活動,學(xué)生的潛能得以開發(fā),情感、態(tài)度、價值觀得以培養(yǎng),從而提高學(xué)生的數(shù)學(xué)素養(yǎng)。因此根據(jù)本節(jié)課內(nèi)容的特點,這節(jié)課的教學(xué)將通過對圓柱體積知識的探究,重點培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法。為了把“一切為了學(xué)生的發(fā)展”這一新的教學(xué)理念融入到了課堂教學(xué)之中。在課堂教學(xué)中將以學(xué)生的活動為主,讓學(xué)生通過親身體驗、實際操作來找出數(shù)學(xué)知識之間的內(nèi)在聯(lián)系。在學(xué)生學(xué)習(xí)過程中,充分運用了遠程教育資源中動畫、聲音、視頻文件,并進行了有效地整合。本節(jié)課將使用以下策略:
    1、利用遷移規(guī)律引入新課,借助遠程資源為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境。
    2、以合作探究為主要的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的自主性,體現(xiàn)學(xué)生的主體地位。
    3、練習(xí)多樣化,層次化。
    4、引導(dǎo)學(xué)生把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運用的能力,培養(yǎng)學(xué)生的綜合素質(zhì)。
    一、回憶舊知,實現(xiàn)遷移。
    1、學(xué)習(xí)圓的面積時,我們是怎樣推導(dǎo)出圓的面積計算公式的?利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關(guān)系,進而推導(dǎo)出圓面積計算公式的過程。
    a.半徑5厘米。
    b.直徑6分米。
    二、指名說說自己想法。
    教師引入:這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積。(板書課題:圓柱的體積)。
    2、生討論,交流。
    三、驗證。
    教師演示:。
    (2)將圓柱的`底面、長方體的底面閃爍后移出來。提問:你學(xué)過將圓變成長方形嗎?
    (3)再次出示圓柱形物體,動畫演示圓柱拼成近似長方體。讓學(xué)生取出圓柱體學(xué)具拼成近似長方體。
    四、探索圓柱與所拼成的近似長方體之間的關(guān)系。
    1、學(xué)生動手進行實驗。請每個小組拿出學(xué)具,并研究轉(zhuǎn)化后的長方體和原來圓柱體積、底面積、高之間的關(guān)系。
    2、學(xué)生利用學(xué)具獨立操作(教師巡視、指導(dǎo)操作有困難的學(xué)生),思考并討論。
    3、通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?
    4、學(xué)生匯報交流。
    五、分析關(guān)系,總結(jié)公式引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:
    圓柱體轉(zhuǎn)化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高??偨Y(jié)公式。
    長方體的體積=底面積×高。
    v=sh。
    六、拓展訓(xùn)練。
    七、課堂總結(jié)。
    長方體的體積=底面積×高。
    v=sh。
    [教學(xué)反思]。
    1、這節(jié)課是通過觀察、猜想、操作驗證、鞏固、應(yīng)用這幾個環(huán)節(jié)來完成的。學(xué)生在最佳的情景中通過實踐、探索、發(fā)現(xiàn),得到了“活”的知識,學(xué)到有價值的數(shù)學(xué)。
    2、操作驗證是本節(jié)課的關(guān)鍵,為體現(xiàn)活動教學(xué)中學(xué)生“主動探索”的特點,我從問題入手,組織學(xué)生圍繞觀察猜想后展開驗證性的操作活動。學(xué)生以活動小組為單位,思維活躍,積極探索,學(xué)習(xí)能力、抽象概括能力和邏輯思維能力得到了提高。
    3、充分利用媒體資源,化解難點,提高課堂效果;注重習(xí)題多樣化、層次化,拓展學(xué)生思維。
    圓柱的體積教學(xué)設(shè)計反思篇十四
    1、使學(xué)生熟練掌握圓柱的體積公式,能正確計算圓柱體積或圓柱形容器的容積。
    2、使學(xué)生體驗解決問題策略的多樣化,不斷激發(fā)學(xué)生以數(shù)學(xué)的好奇心和求知欲。
    3、培養(yǎng)學(xué)生分析問題,解決問題及實踐應(yīng)用能力。
    掌握有關(guān)圓柱的表面積和體積的計算,會綜合運用。
    運用所學(xué)的知識解決生活中的實際問題。
    一、復(fù)習(xí)回顧。
    1、下列圖形的面積公式是什么?
    長方形的面積=。
    正方形的面積=。
    平行四邊形的面積=。
    梯形的面積=。
    2、長方體的表面積=。
    如果圓柱的體積用v表示,底面積用s表示,高用h表示,則圓柱的體積公式用字母表示為。
    如果圓柱的底面半徑為r,高用h表示,則圓柱的體積公式為。
    三、例題學(xué)習(xí):
    四、課堂練習(xí)。
    1)底面積0.6平方米,高0.5米2)底面半徑4厘米,高12厘米。
    3)底面直徑5分米,高6分米。
    圓柱的體積教學(xué)設(shè)計反思篇十五
    本節(jié)課是在學(xué)習(xí)了圓柱的體積公式后進行的解決問題。這要求學(xué)生對圓柱的體積公式掌握的比較扎實,并要求理論與實際生活相結(jié)合。讓學(xué)生通過經(jīng)歷發(fā)現(xiàn)和提出問題、分析和解決問題的完整過程,掌握問題解決的策略。使學(xué)生在解決問題的過程中體會轉(zhuǎn)化、推理和變中有不變的數(shù)學(xué)思想。
    在教學(xué)中教學(xué)我采用操作和演示、講解和嘗試練習(xí)相結(jié)合的方法,是新課與練習(xí)有機地融為一體,做到講與練相結(jié)合。整節(jié)課我采用啟發(fā)式教學(xué)。從導(dǎo)入新授到獨立解答問題,環(huán)節(jié)清晰,教學(xué)目的明確。通過提問引導(dǎo)學(xué)生自主研究問題找到重難點,突破重難點。通過2個瓶子的倒置,把不規(guī)則的物體轉(zhuǎn)化成規(guī)則物體,再來求它們的體積。在進行轉(zhuǎn)化時,讓學(xué)生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實際是求什么?在課堂中學(xué)生積極參與,積極思考,小組合作學(xué)習(xí)。在學(xué)習(xí)中學(xué)習(xí)探究氛圍高,體現(xiàn)高年級學(xué)科特點,并且靈活運用生命化課堂的四自模式、新技術(shù),運用熟練,課堂中使用恰當(dāng)有效。但在教學(xué)時提出的問題應(yīng)該更簡潔明了。在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時常為此感到糾結(jié)。
    剛剛嘗試建構(gòu)高效的課堂教學(xué)范式,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。
    圓柱的體積教學(xué)設(shè)計反思篇十六
    1、知識與技能:理解教材中形體轉(zhuǎn)化的過程,掌握圓柱體積的計算公式,會用公式計算圓柱的體積,解決有關(guān)簡單的實際問題。拓展教材內(nèi)容,初步了解直柱體的相關(guān)知識。
    2、過程與方法:利用教材空間,為學(xué)生搭建思維平臺。讓學(xué)生經(jīng)歷觀察、想象、思考、交流等教學(xué)活動過程,理解圓柱體積計算公式的推導(dǎo)過程,提高學(xué)生思維能力,同時體驗轉(zhuǎn)化和極限的思想。
    3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉(zhuǎn)變?yōu)閷W(xué)生思維能力的培養(yǎng)、提高的過程,并進一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生學(xué)習(xí)興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
    理解圓柱體積計算公式的推導(dǎo)過程,運用圓柱體積計算公式準確解決實際問題。
    正確理解圓柱體積計算公式的推導(dǎo)過程。
    一、情境導(dǎo)入:
    老師手拿一個圓柱形橡皮泥(大小適宜)。
    1、師:通過前面的學(xué)習(xí),關(guān)于圓柱你已經(jīng)知道什么?還想了解它的哪些知識?
    生1:(已學(xué)知識)。
    生2:圓柱是一種立體圖形,那么它的體積怎么計算?
    2、師:聯(lián)系已經(jīng)掌握的有關(guān)立體圖形的知識,你能想辦法求出這個圓柱體的體積嗎?
    生2:將這個圓柱放入一個盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。
    生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
    【學(xué)情分析:學(xué)生在五年級學(xué)習(xí)長方體、正方體有關(guān)知識的基礎(chǔ)上,很容易想到運用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學(xué)生展示自我的機會,培養(yǎng)思維中的自信心?!拷處熢趯W(xué)生中找出小助手,幫助測量有關(guān)數(shù)據(jù),全體同學(xué)計算水的體積,并作記載。
    師:運用轉(zhuǎn)化思想,聯(lián)系已學(xué)知識,解決新生問題,同學(xué)們真了不起!
    4、師:如果要求壓路機前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計算嗎?(不能)那么求圓柱的體積時是否也有一個簡單、易算的體積計算公式呢?今天我們就一起來研究圓柱體積的計算方法。
    二、新舊過度:
    教師引導(dǎo)學(xué)生觀察圓柱形實物。
    1、
    師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長方形的一條長為軸,把長方形旋轉(zhuǎn)一周,就形成一個圓柱體。
    (教師演示:大小不同的長方形旋轉(zhuǎn)形成圓柱體。)。
    生2:把一個圓形上下平移,移動過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)。
    師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關(guān)?(圓柱的底面積和高)。
    學(xué)生口述,同時課件演示圓形轉(zhuǎn)化為近似長方形的過程。
    三、自主探究。
    1、學(xué)生手拿圓柱實物,仔細觀察,獨立思考。
    2、組織學(xué)生小組討論,把個人的想法在小組中交流,形成統(tǒng)一意見。
    強調(diào):在討論過程中,教師參與其中,傾聽學(xué)生想法,調(diào)整匯報次序,同時提醒學(xué)生觀察手中圓柱實物。
    3、匯報交流,統(tǒng)一意見。
    生1:把一個圓剪拼成一個近似的長方形,然后把圓形和近似長方形同時向上平移相同的高度,這時他們的軌跡一個是圓柱體,一個是近似長方體,而且它們的體積相等。
    (師:一個圓柱和一個長方體只要底面積和高分別相等,它們的體積就相等嗎?一會兒我們來解決這個問題。)。
    生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個近似的長方體。
    (師:為什么是近似的長方體?———滲透數(shù)學(xué)極限思想)。
    4、課件演示:
    師:仔細觀察下面這組課件,和你想象的是否一樣?
    演示兩次,第一次把圓柱平均分成16份,再剪拼成一個近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個近似的長方形。
    生:長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱的底面積,而且它們的高相等。
    因為:長方體的體積=底面積×高。
    四、實踐應(yīng)用:
    強調(diào)單位:90×20=1800(立方分米)。
    2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計算公式計算它的體積,你需要測量哪些數(shù)據(jù)?(底面直徑、高)。
    生1:可能測量有誤差,并且還要保留。
    生2:測量水的長、寬時,容器的厚度忽略不計,也能產(chǎn)生誤差。教師說明:每一個科學(xué)結(jié)論都必須經(jīng)過反復(fù)的實驗、計算,才能得到正確的結(jié)論,我們在學(xué)習(xí)上就要有這種不怕吃苦、勇于探索的精神。
    (教師直接給出玻璃杯的底面直徑和高)。
    六、全課小結(jié):
    師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
    啟發(fā)。
    一、充實教材,為提高學(xué)生思維能力搭建平臺。
    課堂教學(xué)中讓學(xué)生在教師的啟發(fā)指導(dǎo)下,獨立思考、積極主動的去探究知識是怎樣形成的,才能真正使學(xué)生成為學(xué)習(xí)的主體。在教材中已經(jīng)提供了圖形轉(zhuǎn)化的過程,那么在沒有學(xué)具讓學(xué)生進行動手操作、親自感悟的情況下,怎樣讓學(xué)生的思維真正參與到知識的形成過程呢?作為教師,必須充實教材。課堂中讓學(xué)生動手測量計算所必需的數(shù)據(jù),自己感悟?qū)W習(xí)圓柱體積計算公式的必要性,合作探究圓柱體的轉(zhuǎn)化方法和過程。所有這些環(huán)節(jié)的設(shè)計,都在潛移默化中引導(dǎo)學(xué)生主動思考,主動參與,在思考與參與中提高了學(xué)生的思維能力。
    二、借助教材,為提高學(xué)生思維能力尋找支點。
    數(shù)學(xué)知識具有一定的結(jié)構(gòu),知識間存在密切的聯(lián)系,教學(xué)時要找出知識間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個較完整的知識系統(tǒng)。教材中設(shè)計了引問“圓可以轉(zhuǎn)化成長方形計算面積,圓柱可以轉(zhuǎn)化成長方形計算體積嗎?”但我認為“面體過渡”在幾何領(lǐng)域中本身就是一個難點,而“面面互化”遷移到“體體互化”,就難上加難,所以設(shè)計中用較長時間溝通新舊知識間的聯(lián)系:排水法的應(yīng)用,平面圖形演變?yōu)榱Ⅲw圖形的過程,圓面積的推導(dǎo)過程。在復(fù)習(xí)當(dāng)中,學(xué)生的綜合運用能力得到提高,更重要的是為下一步學(xué)生的思維活動確立支點,進而提高學(xué)生的思維能力。
    思考。
    一、演示、觀察能否代替操作?
    教材中提供了教具演示,但在本節(jié)教學(xué)前,始終沒有找到學(xué)生使用的操作學(xué)具,而自己也嘗試用土豆、橡皮泥等制作學(xué)具,都因為難度太大(粘接處)而告失敗,在無奈之余,設(shè)計了“獨立思考———小組探究———課件演示———教具操作”四個環(huán)節(jié)來突破本節(jié)難點。就學(xué)生理解、接受方面來說效果不錯。但沒有讓學(xué)生親自操作,總感覺影響學(xué)生思維發(fā)展。類似教學(xué)如:圓錐高的認識。
    二、研究中的失誤會不會造成學(xué)生認知的“失誤”?
    課堂中為求真實,進行了兩次實際測量(第一次測長方體中水的長寬高;第二次測圓柱形橡皮泥的底面直徑和高)。兩次計算結(jié)果的對比,使學(xué)生思維與課堂結(jié)構(gòu)都體現(xiàn)完整性。但由于種種誤差,計算結(jié)果很可能不會相等,這就可能會讓學(xué)生對結(jié)論產(chǎn)生懷疑(盡管教師已經(jīng)說明),那么是否有必要讓學(xué)生經(jīng)歷一個“失誤”的過程呢?類似教學(xué)如:圓周率的計算。
    圓柱的體積教學(xué)設(shè)計反思篇十七
    知識和技能:經(jīng)歷認識圓柱體積,探索圓柱體積計算公式及簡單應(yīng)用的過程。
    過程與方法:讓學(xué)生經(jīng)歷觀察、猜想、證明等數(shù)學(xué)活動過程。探索并掌握圓柱體積公式,能計算圓柱的體積。
    情感、態(tài)度和價值觀:在探索圓柱體積的過程中,培養(yǎng)學(xué)生應(yīng)用已有知識解決問題的能力,進一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和結(jié)論的確定性。
    探索并掌握圓柱體積公式,能計算圓柱的體積。
    圓柱體積公式的推導(dǎo)過程及簡單應(yīng)用。
    兩個不易直觀比較體積大小的圓柱桶,探索體積的課件。
    一課時。
    一、情景導(dǎo)入。
    1.出示“亮亮和爺爺過生日”的情境圖。學(xué)生觀察,說說發(fā)現(xiàn)了什么?想到了哪些問題?2.學(xué)生觀察思考后回答。
    生:亮亮和爺爺?shù)纳盏案舛际菆A柱形的。
    生:生日蛋糕大,就是蛋糕的體積大;生日蛋糕小,就是蛋糕的體積小。
    3.出示兩個圓柱體,學(xué)生觀察、猜想。
    (設(shè)計意圖:創(chuàng)設(shè)情境導(dǎo)入激趣,通過觀察讓學(xué)生對圓柱體體積有了初步的認識,充分調(diào)動學(xué)生的求知欲,同時又為學(xué)生探索新知做好準備。)。
    二、合作探究。
    (一)引導(dǎo)回憶。
    1.設(shè)疑:看到課題你能想到哪些有關(guān)數(shù)學(xué)知識?你還想知道什么數(shù)學(xué)知識?2.學(xué)生回憶后回答。
    師:同學(xué)們知道的可真不少,對以前學(xué)過的知識掌握得很扎實,那么怎樣才能知道一個物體的體積有多大呢?現(xiàn)在我們就共同研究圓柱體積的計算方法。
    (設(shè)計意圖:通過創(chuàng)設(shè)問題情境,可以引導(dǎo)學(xué)生運用已有的生活經(jīng)驗和就知識積極思考,形成任務(wù)驅(qū)動的探究氛圍。
    師:我們以前學(xué)過學(xué)過了長方體和正方體的體積,我們知道了物體所占空間的大小叫做物體的體積。那么怎樣計算圓柱的體積呢?請同學(xué)們猜想一下。
    生:我們是不是象學(xué)過的長方體和正方體體積一樣用“底面積×高”呢?
    師:同學(xué)猜想的很有道理。
    教師用課件演示,學(xué)生觀察思考。
    生:相同點是都可以拼成一個近似的長方體。
    生:不同點是等分的份數(shù)不同,等分的份數(shù)越多,拼成的圖形就越接近一個近似的長方體。
    4.小組同學(xué)討論后匯報結(jié)果,同時板書。
    生:(1)把圓柱拼成長方體后,形狀變了,體積不變。
    (2)拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。
    師:(1)配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。
    用字母表示v=sh。
    師:讓學(xué)生書空,再次讓學(xué)生鞏固圓柱體積公式的推導(dǎo)過程。(設(shè)計意圖:再探究圓柱體積計算的過程中,進一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的穩(wěn)定性。三、出示例題:一根圓柱形的木料,底面積是320平方厘米,高是米。這根木料的體積是多少立方厘米?1.學(xué)生讀題試算。2.集體訂正。
    四、應(yīng)用與拓展。
    1.完成教材第34“試一試”。(1)學(xué)生仔細看圖,明確題意。(2)學(xué)生自主完成后,全班交流。
    五、課堂總結(jié)。
    本節(jié)課你有什么收獲?還有什么疑問?附:板書。
    長方體的體積=底面積×高。