教案的編寫應(yīng)遵循教學(xué)大綱和教材的要求,同時(shí)注重創(chuàng)新,使教學(xué)更有趣味性。編寫教案時(shí)需要考慮學(xué)生的年齡、認(rèn)知能力和學(xué)習(xí)特點(diǎn)等因素。如果你正在尋找一份優(yōu)秀的教案,不妨看看下面的教案范例,或許會給你帶來一些靈感。
人教版高中數(shù)學(xué)必修五教案篇一
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
1.函數(shù)的思想,是用運(yùn)動和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。
3.函數(shù)方程思想的幾種重要形式。
(1)函數(shù)和方程是密切相關(guān)的,對于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
人教版高中數(shù)學(xué)必修五教案篇二
一)、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點(diǎn)、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
人教版高中數(shù)學(xué)必修五教案篇三
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點(diǎn)分析。
根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。
三、學(xué)情分析。
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析。
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法。
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
2、設(shè)計(jì)理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)。
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
人教版高中數(shù)學(xué)必修五教案篇四
對重點(diǎn)內(nèi)容應(yīng)重點(diǎn)復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習(xí).
高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識外,還十分重視對數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強(qiáng)的數(shù)學(xué)方法.同學(xué)們在復(fù)習(xí)時(shí)應(yīng)對每一種方法的實(shí)質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對數(shù)學(xué)思想的理解及運(yùn)用,如函數(shù)思想、數(shù)形結(jié)合思想.
應(yīng)注意實(shí)際問題的解決和探索性試題的研究。
現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強(qiáng)運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時(shí)學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無患.這一階段,重點(diǎn)是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強(qiáng)解題指導(dǎo),提高應(yīng)試能力.
人教版高中數(shù)學(xué)必修五教案篇五
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。
本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。
函數(shù)。
函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點(diǎn)之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會對具體問題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識,最終解決問題。實(shí)現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點(diǎn)??疾楹瘮?shù)內(nèi)容的同時(shí),用函數(shù)的思想觀點(diǎn)研究問題,以及數(shù)形結(jié)合思想、分類討論思想的靈活熟練應(yīng)用,也是高考的一個(gè)重點(diǎn)。
規(guī)律方法總結(jié)。
求函數(shù)解析式時(shí),針對條件的特點(diǎn)可選用換元法、待定系數(shù)法、湊項(xiàng)法、列方程組法等進(jìn)行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
人教版高中數(shù)學(xué)必修五教案篇六
在復(fù)習(xí)時(shí),由于解題的量很大,就更要求我們將解題活動組織得生動活潑、情趣盎然。讓學(xué)生領(lǐng)略到數(shù)學(xué)的優(yōu)美、奇異和魅力,這樣才能變苦役為享受,有效地防止智力疲勞,保持解題的“好胃口”。一道好的數(shù)學(xué)題,即便具有相當(dāng)?shù)碾y度,它卻像一段引人入勝的故事,又像一部情節(jié)曲折的電視劇,那迭起的懸念、叢生的疑竇正是它的誘人之處。
“山重水復(fù)”的困惑被“柳暗花明”的喜悅?cè)〈?,學(xué)生又怎能不贊嘆自己智能的威力?我們要使學(xué)生由“要我學(xué)”轉(zhuǎn)化為“我要學(xué)”,課堂上要想方設(shè)法調(diào)動學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)情境,激發(fā)熱情,有這樣一些比較成功的做法:一是運(yùn)用情感原理,喚起學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情;二是運(yùn)用成功原理,變苦學(xué)為樂學(xué);三是在學(xué)法上教給學(xué)生“點(diǎn)金術(shù)”,等等。
在課堂教學(xué)結(jié)構(gòu)上,更新教育觀念,始終堅(jiān)持以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)原則。
教育家蘇霍姆林斯基曾經(jīng)告誡我們:“希望你們要警惕,在課堂上不要總是教師在講,這種做法不好……讓學(xué)生通過自己的努力去理解的東西,才能成為自己的東西,才是他真正掌握的東西。”按我們的說法就是:師傅的任務(wù)在于度,徒弟的任務(wù)在于悟。數(shù)學(xué)課堂教學(xué)必須廢除“注入式”“滿堂灌”的教法。復(fù)習(xí)課也不能由教師包講,更不能成為教師展示自己解題“高難動作”的“絕活表演”,而要讓學(xué)生成為學(xué)習(xí)的主人,讓他們在主動積極的探索活動中實(shí)現(xiàn)創(chuàng)新、突破,展示自己的才華智慧,提高數(shù)學(xué)素養(yǎng)和悟性。
作為教學(xué)活動的組織者,教師的任務(wù)是點(diǎn)撥、啟發(fā)、誘導(dǎo)、調(diào)控,而這些都應(yīng)以學(xué)生為中心。復(fù)習(xí)課上有一個(gè)突出的矛盾,就是時(shí)間太緊,既要處理足量的題目,又要充分展示學(xué)生的思維過程,二者似乎是很難兼顧。我們可采用“焦點(diǎn)訪談”法較好地解決這個(gè)問題,因大多數(shù)題目是“入口寬,上手易”,但在連續(xù)探究的過程中,常在某一點(diǎn)或某幾點(diǎn)上擱淺受阻,這些點(diǎn)被稱為“焦點(diǎn)”,其余的則被稱為“外圍”。我們大可不必在外圍處花精力去進(jìn)行淺表性的啟發(fā)誘導(dǎo),好鋼要用在刀刃上,而只要在焦點(diǎn)處發(fā)動學(xué)生探尋突破口,通過訪談,集中學(xué)生的智慧,讓學(xué)生的思維在關(guān)鍵處閃光,能力在要害處增長,弱點(diǎn)在隱蔽處暴露,意志在細(xì)微處磨礪。通過訪談實(shí)現(xiàn)學(xué)生間、師生間智慧和能力的互補(bǔ),促進(jìn)相互的心靈和感情的溝通。
人教版高中數(shù)學(xué)必修五教案篇七
初中新課程中數(shù)學(xué)知識點(diǎn)刪了很多要求,如“立方和、立方差”公式,“韋達(dá)定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點(diǎn)不作要求,但是從高中數(shù)學(xué)教學(xué)的實(shí)踐來看,學(xué)生掌握了這些知識點(diǎn)對學(xué)習(xí)新的知識有一定的促進(jìn)作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實(shí)際情況,做適當(dāng)?shù)难a(bǔ)充,同時(shí),初中學(xué)習(xí)的有理數(shù)乘方及運(yùn)算性質(zhì)和二次函數(shù),這些知識也要進(jìn)行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
2、思維能力和運(yùn)算能力的進(jìn)一步強(qiáng)化。
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實(shí)踐能力很強(qiáng),但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時(shí),由于初中大量使用計(jì)算器,學(xué)生的計(jì)算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強(qiáng)的化簡、變形、推理及運(yùn)算能力有一定的差距,從教學(xué)的實(shí)踐來看,學(xué)生作業(yè)中出現(xiàn)的大量錯誤與計(jì)算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實(shí)際情況,從高一開始就要切實(shí)提高學(xué)生的運(yùn)算能力。
3、抓住學(xué)科特點(diǎn),做好順利過渡。
高中數(shù)學(xué)知識量大,理論性、綜合性強(qiáng),同時(shí)高中課時(shí)少,學(xué)生基礎(chǔ)差等,知識的難度和對學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識綜合性較強(qiáng))。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強(qiáng)的閱讀能力、運(yùn)算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數(shù)學(xué)知識點(diǎn)較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實(shí)際情況及時(shí)調(diào)整教學(xué)方法和教學(xué)過程,使學(xué)生能順利進(jìn)入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
人教版高中數(shù)學(xué)必修五教案篇八
曾經(jīng)有同學(xué)問我,你是怎么學(xué)數(shù)學(xué)的,也沒見你做多少的練習(xí)題,可數(shù)學(xué)的成績不錯。我覺得課堂的學(xué)習(xí)是關(guān)鍵,要緊緊抓住課堂的45分鐘的時(shí)間。在這有限的時(shí)間內(nèi),是教師與學(xué)生的交流,這時(shí)候,作為學(xué)生你的思維要跟得上老師的變化,這個(gè)知識點(diǎn)的關(guān)鍵點(diǎn)在那兒,前后的聯(lián)系是什么,在聽課的過程中不能分心、走神,提高聽課的效率。為此,在每一堂課前,我都要做好以下幾項(xiàng)工作。
1、課前預(yù)習(xí)是關(guān)鍵。
相信我們學(xué)生都聽到過老師對我們的要求,要進(jìn)行課前預(yù)習(xí),不論什么課,這是所有的老師都會提的一個(gè)要求,可真正進(jìn)行課前預(yù)習(xí)的學(xué)生有多少呢,班里面我們也沒有統(tǒng)計(jì)過,不過我覺得有一半的學(xué)生預(yù)習(xí)了,就是不錯的了,另外,既使有的學(xué)生也預(yù)習(xí)了,只是走馬觀花的看一下書,那效果可想而知。
預(yù)習(xí)也要講究方法,在預(yù)習(xí)中發(fā)現(xiàn)了難點(diǎn),出現(xiàn)了自己解決不了的問題,這個(gè)就是聽課中的重點(diǎn),要做好標(biāo)記;通過預(yù)習(xí)還能發(fā)現(xiàn)自己沒有掌握住的舊知識,起到溫故而知新的作用,可以對知識起到查漏補(bǔ)缺的效果;另外,預(yù)習(xí)的過程也是一個(gè)自學(xué)的過程,有助于提高自己分析問題、解決問題的能力,將自己在預(yù)習(xí)中的理解和老師講解的進(jìn)行對照,不斷進(jìn)行改進(jìn),可以起到提高自己思維水平的作用。
2、科學(xué)聽課是保障。
所謂科學(xué)聽課也就是說在教師授課的過程中學(xué)生的表現(xiàn),是不是為這節(jié)課做好了準(zhǔn)備工作。在聽課的過程中要調(diào)動眼、耳、心、口、手等各個(gè)器官,全身心的投入到課堂學(xué)習(xí)中去,在聽課的過程中遇到重要的知識點(diǎn)同時(shí)又要做好筆記,但是不能因?yàn)楣P記的原因而影響到聽課,所以,這里面有一個(gè)科學(xué)合理安排聽課時(shí)間的問題。聽課的過程中是一個(gè)高度集中注意力的過程,但同時(shí)也是有張有弛;聽課的過程中也的聽的技巧,聽教師如何分析?如何歸納總結(jié)?如何突破難點(diǎn),結(jié)合自己在預(yù)習(xí)時(shí)又是如何理解的,相互比較,同時(shí)要用心思考,跟上教師的教學(xué)思路,能在教師的啟發(fā)和點(diǎn)撥下有所得,這是這一堂課最根本的關(guān)節(jié)所在。
3、做一定量的習(xí)題。
在數(shù)學(xué)的學(xué)習(xí)過程中,對于做多少習(xí)題并沒有確切的數(shù)據(jù),但有兩種傾向:一種是做大量的習(xí)題;另一種是做適當(dāng)?shù)牧?xí)題。做大量的習(xí)題的做法來源于題海戰(zhàn)術(shù),曾經(jīng)有一種說法,做題吧,在做題的過程中你就掌握了知識點(diǎn),誠然,多做題對于掌握知識是有好處的,但并不是題做的越多越好。在高中的學(xué)習(xí)過程中,時(shí)間非常緊,在有限的時(shí)間內(nèi)要學(xué)習(xí)好幾門知識,你數(shù)學(xué)題做的多了,難免會在其他科目上用時(shí)不夠,會對其他科目的學(xué)習(xí)造成影響。因此,大量的做題是不可取的。
在學(xué)習(xí)的過程中,我崇尚做適當(dāng)?shù)牧?xí)題,而且在實(shí)際的學(xué)習(xí)過程中我也是這樣做的。做題的過程中是一個(gè)舉一反三的過程,做會這一道題就掌握了這一類題目的做法,關(guān)鍵的問題是在做完這道題后的分析總結(jié),數(shù)學(xué)的題目太多了,你是不可能做完所有的題的,因此,我們在掌握知識點(diǎn)的時(shí)候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當(dāng)做完一道題后尤其是難度大的題目,我會靜下心來再從頭看一遍,把其中的關(guān)鍵點(diǎn)再熟悉一遍,雖然當(dāng)時(shí)看起來是費(fèi)了一點(diǎn)時(shí)間,但那收獲是很大的。以后再遇到這類題目的時(shí)候,解決起來就相對容易的多。
人教版高中數(shù)學(xué)必修五教案篇九
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式。
會從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過程.
人教版高中數(shù)學(xué)必修五教案篇十
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
教學(xué)重點(diǎn):型的不等式的解法;。
教學(xué)難點(diǎn):利用絕對值的意義分析、解決問題.
教學(xué)過程設(shè)計(jì)。
教師活動。
學(xué)生活動。
設(shè)計(jì)意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.。
二、新課。
【提問】如何解絕對值方程.。
【質(zhì)疑】的解集有幾部分?為什么也是它的解集?
【練習(xí)】解下列不等式:
(1);
(2)。
【設(shè)問】如果在中的,也就是怎樣解?
【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果中的是,也就是怎樣解?
【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來解.。
或
由得。
由得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式的解集表示為。
畫出數(shù)軸。
思考答案。
不等式的解集為。
或表示為,或。
筆答。
(1)。
(2),或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程()的解法.。
由淺入深,循序漸進(jìn),在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.。
針對解()絕對值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。
落實(shí)會正確解出與()絕對值不等式的教學(xué)目標(biāo).。
在將看成一個(gè)整體的關(guān)鍵處點(diǎn)撥、啟發(fā),使學(xué)生主動地進(jìn)行練習(xí).。
繼續(xù)強(qiáng)化將看成一個(gè)整體繼續(xù)強(qiáng)化解不等式時(shí)不要犯丟掉這部分解的錯誤.。
三、課堂練習(xí)。
解下列不等式:
(1);
(2)。
筆答。
(1);
(2)。
檢查教學(xué)目標(biāo)落實(shí)情況.。
四、小結(jié)。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集.。
五、作業(yè)。
1.閱讀課本含絕對值不等式解法.。
2.習(xí)題2、3、4。
課堂教學(xué)設(shè)計(jì)說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯誤,以提高學(xué)生的運(yùn)算能力.
人教版高中數(shù)學(xué)必修五教案篇十一
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個(gè)角的三角函數(shù)的運(yùn)算規(guī)律,可實(shí)現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識銜接起來使用。
重點(diǎn)難點(diǎn)。
重點(diǎn):幾組三角恒等式的應(yīng)用。
難點(diǎn):靈活應(yīng)用和、差、倍角等公式進(jìn)行三角式化簡、求值、證明恒等式。
人教版高中數(shù)學(xué)必修五教案篇十二
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實(shí)基礎(chǔ)。
學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力。
為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時(shí),動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力。可以從簡單的圖形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實(shí)形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
四、“轉(zhuǎn)化”思想的應(yīng)用。
解立體幾何的問題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
五、建立數(shù)學(xué)模型。
新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問題用數(shù)學(xué)語言抽象概括,再從數(shù)學(xué)角度來反映或近似地反映實(shí)際問題時(shí),所得出的關(guān)于實(shí)際問題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
從形狀的角度反映現(xiàn)實(shí)世界的物體時(shí),經(jīng)過抽象得到的空間幾何體就是現(xiàn)實(shí)世界物體的幾何模型。由于立體幾何學(xué)習(xí)的知識內(nèi)容與學(xué)生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實(shí)世界中的許多物體。他們直觀、具體、對培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學(xué)習(xí)時(shí),一方面要注意從實(shí)際出發(fā),把學(xué)習(xí)的知識與周圍的實(shí)物聯(lián)系起來,另一方面,也要注意經(jīng)歷從現(xiàn)實(shí)的生活抽象空間圖形的過程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。
人教版高中數(shù)學(xué)必修五教案篇十三
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學(xué)重難點(diǎn)。
利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
人教版高中數(shù)學(xué)必修五教案篇十四
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計(jì)算有關(guān)的生活實(shí)際問題。
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個(gè)三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時(shí)使新知識建立在已有知識的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。
《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個(gè)思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實(shí)際問題中去,對所學(xué)數(shù)學(xué)知識的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時(shí)卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實(shí)際情況,本章重視從實(shí)際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實(shí)際問題。
1.1正弦定理和余弦定理(約3課時(shí))
1.2應(yīng)用舉例(約4課時(shí))
1.3實(shí)習(xí)作業(yè)(約1課時(shí))
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測量問題的過程中,一個(gè)問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進(jìn)行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實(shí)際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達(dá)實(shí)習(xí)過程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實(shí)踐能力。教師要注意對于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對于實(shí)際測量問題的選擇,及時(shí)糾正實(shí)際操作中的錯誤,解決測量中出現(xiàn)的一些問題。
人教版高中數(shù)學(xué)必修五教案篇十五
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學(xué)重難點(diǎn)。
利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
將本文的word文檔下載到電腦,方便收藏和打印。
人教版高中數(shù)學(xué)必修五教案篇十六
1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點(diǎn)表示有理數(shù);;會求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。
【情感態(tài)度與價(jià)值觀】感受數(shù)形結(jié)合的.思想方法;
【教學(xué)重點(diǎn)】會說出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題。
(1)(出示投影1)問題:三個(gè)溫度計(jì)所表示的溫度是多少?
學(xué)生回答.。
(2)在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)。
(二)得出定義,揭示內(nèi)涵。
與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點(diǎn)。
(2)標(biāo)正方向。
(3)選取單位長度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫起)。
概念:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。
(三)強(qiáng)化概念,深入理解。
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫一個(gè)數(shù)軸。教師在黑板上畫。
(四)動手練習(xí),歸納總結(jié)。
1、在數(shù)軸上的點(diǎn)表示有理數(shù)。
一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。
明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示”
2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育。
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計(jì)回答問題。
(1)在數(shù)軸上表示的兩個(gè)數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
鞏固所學(xué)知識。
(五)、歸納小結(jié),強(qiáng)化思想。
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素。
2、數(shù)軸上兩個(gè)不同的點(diǎn)所表示的兩個(gè)有理數(shù)大小關(guān)系。
3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示。
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.21、2、3。
選作第4題。
人教版高中數(shù)學(xué)必修五教案篇十七
引用:本文《高中化學(xué)必修二教案(人教版)》來源于師庫網(wǎng),由師庫網(wǎng)博客摘錄整理,以下是的詳細(xì)內(nèi)容:開發(fā)利用金屬礦物和海水...《基本營養(yǎng)物質(zhì)》教案化學(xué)反應(yīng)的速率和限度化學(xué)能與熱能化學(xué)與資源綜合利用、環(huán)...最簡單的有機(jī)化合物dd...《生活中兩種常見的'有機(jī)...來自石油和煤的兩種基本...引用:師庫網(wǎng)溫馨提示本篇內(nèi)容來源于師庫網(wǎng),旨在用于課件制作交流,非盈利性質(zhì),僅供參考,針對本文的問題如需了解更詳細(xì),可留言或者聯(lián)系客服tags:教案、課件、師庫網(wǎng)、教案網(wǎng)、課件網(wǎng)
人教版高中數(shù)學(xué)必修五教案篇十八
專題八當(dāng)今世界經(jīng)濟(jì)的全球化趨勢。
通史概要:
當(dāng)今世界經(jīng)濟(jì)發(fā)展有兩個(gè)明顯的趨勢:一是世界經(jīng)濟(jì)區(qū)域集團(tuán)化,二是世界經(jīng)濟(jì)全球化。世界經(jīng)濟(jì)區(qū)域集團(tuán)化是最終實(shí)現(xiàn)經(jīng)濟(jì)全球化的重要步驟和途徑,經(jīng)濟(jì)全球化則是區(qū)域經(jīng)濟(jì)集團(tuán)化的最終歸宿。
世界經(jīng)濟(jì)區(qū)域集團(tuán)化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國家化、國際分工向縱深發(fā)展需要加強(qiáng)合作的結(jié)果,也是世界經(jīng)濟(jì)競爭激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國際間經(jīng)濟(jì)競爭和客觀上存在的分工。區(qū)域集團(tuán)化的發(fā)展分為三個(gè)階段:第一階段為五六十年代,世界經(jīng)濟(jì)集團(tuán)化的趨勢主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團(tuán)化成為一種世界經(jīng)濟(jì)現(xiàn)象。歐洲區(qū)域集團(tuán)化趨勢進(jìn)一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經(jīng)濟(jì)集團(tuán)也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團(tuán)化掀起新的浪潮,進(jìn)入了較高層次的經(jīng)濟(jì)一體化時(shí)期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟(jì)集團(tuán)。
世界經(jīng)濟(jì)全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢。它突出的表現(xiàn)在國際貿(mào)易、國際投資、國際金融和跨國公司的發(fā)展。經(jīng)濟(jì)全球化的過程中的問題是:在經(jīng)濟(jì)全球化的過程中,不可避免地把資本主義固有的矛盾擴(kuò)展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機(jī)、全球性的經(jīng)濟(jì)金融危機(jī)、恐怖組織活動猖獗等等,直接影響到人類的生存與發(fā)展。
我國在當(dāng)今世界經(jīng)濟(jì)發(fā)展趨勢中,作為發(fā)展中國家,應(yīng)該如何面對機(jī)遇和挑戰(zhàn),成了新時(shí)期經(jīng)濟(jì)發(fā)展人們共同關(guān)心的話題。從中國加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強(qiáng)同東盟的聯(lián)系的史實(shí)中,我們的態(tài)度是:在堅(jiān)持獨(dú)立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強(qiáng)國際的合作與交流,參與國際競爭,抓住機(jī)遇,接受挑戰(zhàn),在國際的競爭和合作中,提高我國的經(jīng)濟(jì)發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟(jì)發(fā)展趨勢這一經(jīng)濟(jì)現(xiàn)象,樹立正確的.發(fā)展觀。
一歐洲的聯(lián)合。
課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。
教學(xué)目標(biāo):
(1)知識與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟(jì)進(jìn)入“黃金時(shí)代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認(rèn)識歐洲聯(lián)盟成立對世界經(jīng)濟(jì)和政治格局的影響。
概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。
(2)過程與方法:通過討論西歐經(jīng)濟(jì)在二戰(zhàn)后進(jìn)入“黃金時(shí)代”的共同原因,進(jìn)一步思考中國的社會主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗(yàn),學(xué)習(xí)用聯(lián)系的方法看待問題,提高理論指導(dǎo)實(shí)踐的能力;通過分組學(xué)習(xí),搜集“歐共體”及“歐盟”成立的資料,了解整個(gè)歐洲走向聯(lián)合的過程,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。
(3)情感、態(tài)度與價(jià)值觀:通過對歐洲走向聯(lián)合這段歷史的學(xué)習(xí),認(rèn)識當(dāng)今國際社會國家間團(tuán)結(jié)協(xié)作的重要性,樹立國際意識;通過對歐洲走向聯(lián)合的史實(shí)的歸納,得出一個(gè)別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國的實(shí)際,進(jìn)一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現(xiàn)代化建設(shè)而奮斗的責(zé)任感。
教學(xué)課時(shí):1課時(shí)。
重點(diǎn)難點(diǎn):
重點(diǎn):歐洲走向聯(lián)合過程及影響。
難點(diǎn):歐洲走向聯(lián)合的原因。
教學(xué)建議:
1、本課共有三個(gè)方面的內(nèi)容,“西歐經(jīng)濟(jì)的'黃金時(shí)代'”主要講述:二戰(zhàn)后的20世紀(jì)50年代到60年代,西歐各國經(jīng)濟(jì)在恢復(fù)的基礎(chǔ)上,進(jìn)入調(diào)整增長期,被稱為西歐經(jīng)濟(jì)的“黃金時(shí)代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟(jì)一體化到政治一體化的發(fā)展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進(jìn)一步表明歐洲走向聯(lián)合的趨勢。
2、西歐經(jīng)濟(jì)高速發(fā)展的共同原因:第一,西歐各國進(jìn)行社會改革和政策調(diào)整。進(jìn)行社會改革,例如:推行福利制度,適當(dāng)改善人民的生活條件,緩和社會矛盾,穩(wěn)定社會秩序;進(jìn)行政策調(diào)整,如:將一些私人壟斷企業(yè)國有化,并建立有關(guān)國計(jì)民生的重要工業(yè)部門。這些政策的推行,促進(jìn)了西歐經(jīng)濟(jì)的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計(jì)劃的實(shí)施,解決了西歐戰(zhàn)后經(jīng)濟(jì)發(fā)展的啟動資金,西歐重工業(yè)在短時(shí)期內(nèi)完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對產(chǎn)業(yè)部門進(jìn)行了改造,使勞動生產(chǎn)率大大提高,從而有力地推動了經(jīng)濟(jì)的高速發(fā)展。
3、伴隨著歐洲經(jīng)濟(jì)合作的成功,歐洲經(jīng)濟(jì)不斷的恢復(fù),要求在國際上發(fā)揮更重要的作用。因而要加強(qiáng)在政治領(lǐng)域的合作成為歐洲各國的一致要求。面對二戰(zhàn)結(jié)束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個(gè)更加強(qiáng)大的團(tuán)體來維護(hù)自己的利益。于是在政治領(lǐng)域的合作很快便實(shí)施開來。
4、為進(jìn)一步加強(qiáng)歐洲共同體之間的經(jīng)濟(jì)合作與交流,減少共同體內(nèi)部成員國存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實(shí)現(xiàn)經(jīng)濟(jì)的聯(lián)合,從而進(jìn)一步加強(qiáng)歐洲各國之間的政治合作。
二、發(fā)展的亞太。
課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。
教學(xué)目標(biāo):
(1)知識與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟(jì)合作組織建立的過程,探討亞太國家加強(qiáng)合作的途徑與方式。
(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴(kuò)大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學(xué)習(xí)用比較的方法認(rèn)識歷史問題;通過上網(wǎng)等途徑搜集中國參加apec會議的資料,多渠道去了解和認(rèn)識apec建立的史實(shí)及影響。
(3)情感、態(tài)度與價(jià)值觀:通過對東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟(jì)一體化進(jìn)程的學(xué)習(xí)和了解,體會當(dāng)今世界國家間加強(qiáng)合作、競爭與發(fā)展的重要性,樹立合作與競爭的意識。
教學(xué)課時(shí):1課時(shí)。
重點(diǎn)難點(diǎn):
重點(diǎn):通過了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。
難點(diǎn):中國積極參與世界區(qū)域經(jīng)濟(jì)組織的意義。
教學(xué)建議:
1、在經(jīng)濟(jì)全球化的進(jìn)程中,亞太地區(qū)的經(jīng)濟(jì)集團(tuán)化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟(jì)集團(tuán)有兩個(gè)分別在該地區(qū)。這一地區(qū)成為當(dāng)今世界上經(jīng)濟(jì)發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個(gè)經(jīng)濟(jì)區(qū)域集團(tuán)為例,介紹了當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。每個(gè)集團(tuán)內(nèi)部有著自身的規(guī)則的同時(shí)也不斷與其它區(qū)域集團(tuán)相聯(lián)系,從而使世界經(jīng)濟(jì)形成了密不可分的一個(gè)整體。
2、東南亞國家聯(lián)盟自1967成立以來,已經(jīng)歷時(shí)近三分之一世紀(jì)。東盟在維護(hù)和促進(jìn)各成員國相互間的政治和經(jīng)濟(jì)合作,實(shí)現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經(jīng)濟(jì)增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強(qiáng)了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。
3、日本經(jīng)濟(jì)的崛起,特別是歐洲經(jīng)濟(jì)一體化實(shí)施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經(jīng)濟(jì)的內(nèi)在動力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價(jià)值觀念、風(fēng)俗習(xí)慣等又頗相似;經(jīng)濟(jì)互補(bǔ)性強(qiáng);相互貿(mào)易基礎(chǔ)良好,美、加、墨3國具有實(shí)行經(jīng)濟(jì)一體化的必要性,又具有實(shí)行經(jīng)濟(jì)一體化的可能性。美國認(rèn)為要取得世界經(jīng)濟(jì)的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟(jì)區(qū)域集團(tuán),才能在經(jīng)濟(jì)全球化大潮中立于不敗之地。
4、二十世紀(jì)七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對外開放經(jīng)濟(jì)政策和經(jīng)濟(jì)迅速發(fā)展為亞太區(qū)域經(jīng)濟(jì)合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟(jì)的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟(jì)合作創(chuàng)造了條件。歐共體統(tǒng)一市場和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟(jì)合作的方向發(fā)展。亞太經(jīng)合組織的主要活動,為各成員提供區(qū)域經(jīng)濟(jì),科技,貿(mào)易和發(fā)展等方面多邊合作的機(jī)會,交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗(yàn),促進(jìn)本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運(yùn)作模式均區(qū)別于歐盟和nafta,有自身的特點(diǎn),這些特點(diǎn)適應(yīng)了apec各成員國經(jīng)濟(jì)發(fā)展的狀況和經(jīng)濟(jì)運(yùn)行模式。
三、經(jīng)濟(jì)全球化的世界。
課標(biāo)要求:
(1)以“布雷頓森林體系”建立為例,認(rèn)識第二次世界大戰(zhàn)后以美國為主導(dǎo)的資本主義世界經(jīng)濟(jì)體系的形成。
(2)了解世界貿(mào)易組織(wto)的由來和發(fā)展,認(rèn)識它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用。了解中國參加世界貿(mào)易組織(wto)的史實(shí),認(rèn)識其影響和作用。
(3)了解經(jīng)濟(jì)全球化的發(fā)展趨勢,探討經(jīng)濟(jì)全球化進(jìn)程中的問題。
教學(xué)目標(biāo):
(1)知識與能力:了解“布雷頓森林體系”建立的基本史實(shí),分析其影響;簡述世界貿(mào)易組織(wto)的由來和發(fā)展,認(rèn)識它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用;了解中國參加世界貿(mào)易組織(wto)的史實(shí),認(rèn)識其影響和作用;概述經(jīng)濟(jì)全球化的發(fā)展趨勢,探討經(jīng)濟(jì)全球化進(jìn)程中的問題。
(2)過程與方法:閱讀課文和查找中國加入世貿(mào)組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿(mào)易組織建立的必要性并對中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟(jì)全球化對本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟(jì)全球化出現(xiàn)的問題?從多角度去分析歷史問題。
人教版高中數(shù)學(xué)必修五教案篇十九
1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點(diǎn)表示有理數(shù);;會求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】 經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系
【情感態(tài)度與價(jià)值觀】 感受數(shù)形結(jié)合的思想方法;
【教學(xué)重點(diǎn)】會說出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題
(1)(出示投影1)問題:三個(gè)溫度計(jì)所表示的溫度是多少?
學(xué)生回答.
(2)在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容―數(shù)軸(板書課題)
(二)得出定義,揭示內(nèi)涵
與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點(diǎn)
(2)標(biāo)正方向
(3)選取單位長度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫起)。
概念:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。
(三)強(qiáng)化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫一個(gè)數(shù)軸。教師在黑板上畫
(四)動手練習(xí),歸納總結(jié)
1、在數(shù)軸上的點(diǎn)表示有理數(shù)。
一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。
明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示”
2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計(jì)回答問題
(1)在數(shù)軸上表示的兩個(gè)數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學(xué)知識
(五)、歸納小結(jié),強(qiáng)化思想
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個(gè)不同的點(diǎn)所表示的兩個(gè)有理數(shù)大小關(guān)系
3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.2 1、2、3
選作第4題
人教版高中數(shù)學(xué)必修五教案篇二十
一)、培養(yǎng)良好的學(xué)習(xí)興趣。
1、課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。
2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點(diǎn)解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時(shí)回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價(jià),變?yōu)楸薏邔W(xué)習(xí)的動力。
3、思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。
5、把概念回歸自然。所有學(xué)科都是從實(shí)際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實(shí)生活,如角的概念、直角坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實(shí)際生活中抽象出來的。只有回歸現(xiàn)實(shí)才能對概念的理解切實(shí)可靠,在應(yīng)用概念判斷、推理時(shí)會準(zhǔn)確。
二)、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。
三)、有意識培養(yǎng)自己的各方面能力。
數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計(jì)算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時(shí)學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實(shí)踐活動,如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動。平時(shí)注意觀察,比如,空間想象能力是通過實(shí)例凈化思維,把空間中的實(shí)體高度抽象在大腦中,并在大腦中進(jìn)行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設(shè)計(jì)“智力課”和“智力問題”比如對習(xí)題的解答時(shí)的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達(dá)到自己各方面能力的全面發(fā)展。
人教版高中數(shù)學(xué)必修五教案篇一
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
1.函數(shù)的思想,是用運(yùn)動和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。
3.函數(shù)方程思想的幾種重要形式。
(1)函數(shù)和方程是密切相關(guān)的,對于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
人教版高中數(shù)學(xué)必修五教案篇二
一)、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點(diǎn)、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
人教版高中數(shù)學(xué)必修五教案篇三
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點(diǎn)分析。
根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。
三、學(xué)情分析。
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析。
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法。
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
2、設(shè)計(jì)理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)。
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
人教版高中數(shù)學(xué)必修五教案篇四
對重點(diǎn)內(nèi)容應(yīng)重點(diǎn)復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習(xí).
高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識外,還十分重視對數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強(qiáng)的數(shù)學(xué)方法.同學(xué)們在復(fù)習(xí)時(shí)應(yīng)對每一種方法的實(shí)質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對數(shù)學(xué)思想的理解及運(yùn)用,如函數(shù)思想、數(shù)形結(jié)合思想.
應(yīng)注意實(shí)際問題的解決和探索性試題的研究。
現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強(qiáng)運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時(shí)學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無患.這一階段,重點(diǎn)是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強(qiáng)解題指導(dǎo),提高應(yīng)試能力.
人教版高中數(shù)學(xué)必修五教案篇五
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。
本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。
函數(shù)。
函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點(diǎn)之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會對具體問題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識,最終解決問題。實(shí)現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點(diǎn)??疾楹瘮?shù)內(nèi)容的同時(shí),用函數(shù)的思想觀點(diǎn)研究問題,以及數(shù)形結(jié)合思想、分類討論思想的靈活熟練應(yīng)用,也是高考的一個(gè)重點(diǎn)。
規(guī)律方法總結(jié)。
求函數(shù)解析式時(shí),針對條件的特點(diǎn)可選用換元法、待定系數(shù)法、湊項(xiàng)法、列方程組法等進(jìn)行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
人教版高中數(shù)學(xué)必修五教案篇六
在復(fù)習(xí)時(shí),由于解題的量很大,就更要求我們將解題活動組織得生動活潑、情趣盎然。讓學(xué)生領(lǐng)略到數(shù)學(xué)的優(yōu)美、奇異和魅力,這樣才能變苦役為享受,有效地防止智力疲勞,保持解題的“好胃口”。一道好的數(shù)學(xué)題,即便具有相當(dāng)?shù)碾y度,它卻像一段引人入勝的故事,又像一部情節(jié)曲折的電視劇,那迭起的懸念、叢生的疑竇正是它的誘人之處。
“山重水復(fù)”的困惑被“柳暗花明”的喜悅?cè)〈?,學(xué)生又怎能不贊嘆自己智能的威力?我們要使學(xué)生由“要我學(xué)”轉(zhuǎn)化為“我要學(xué)”,課堂上要想方設(shè)法調(diào)動學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)情境,激發(fā)熱情,有這樣一些比較成功的做法:一是運(yùn)用情感原理,喚起學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情;二是運(yùn)用成功原理,變苦學(xué)為樂學(xué);三是在學(xué)法上教給學(xué)生“點(diǎn)金術(shù)”,等等。
在課堂教學(xué)結(jié)構(gòu)上,更新教育觀念,始終堅(jiān)持以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)原則。
教育家蘇霍姆林斯基曾經(jīng)告誡我們:“希望你們要警惕,在課堂上不要總是教師在講,這種做法不好……讓學(xué)生通過自己的努力去理解的東西,才能成為自己的東西,才是他真正掌握的東西。”按我們的說法就是:師傅的任務(wù)在于度,徒弟的任務(wù)在于悟。數(shù)學(xué)課堂教學(xué)必須廢除“注入式”“滿堂灌”的教法。復(fù)習(xí)課也不能由教師包講,更不能成為教師展示自己解題“高難動作”的“絕活表演”,而要讓學(xué)生成為學(xué)習(xí)的主人,讓他們在主動積極的探索活動中實(shí)現(xiàn)創(chuàng)新、突破,展示自己的才華智慧,提高數(shù)學(xué)素養(yǎng)和悟性。
作為教學(xué)活動的組織者,教師的任務(wù)是點(diǎn)撥、啟發(fā)、誘導(dǎo)、調(diào)控,而這些都應(yīng)以學(xué)生為中心。復(fù)習(xí)課上有一個(gè)突出的矛盾,就是時(shí)間太緊,既要處理足量的題目,又要充分展示學(xué)生的思維過程,二者似乎是很難兼顧。我們可采用“焦點(diǎn)訪談”法較好地解決這個(gè)問題,因大多數(shù)題目是“入口寬,上手易”,但在連續(xù)探究的過程中,常在某一點(diǎn)或某幾點(diǎn)上擱淺受阻,這些點(diǎn)被稱為“焦點(diǎn)”,其余的則被稱為“外圍”。我們大可不必在外圍處花精力去進(jìn)行淺表性的啟發(fā)誘導(dǎo),好鋼要用在刀刃上,而只要在焦點(diǎn)處發(fā)動學(xué)生探尋突破口,通過訪談,集中學(xué)生的智慧,讓學(xué)生的思維在關(guān)鍵處閃光,能力在要害處增長,弱點(diǎn)在隱蔽處暴露,意志在細(xì)微處磨礪。通過訪談實(shí)現(xiàn)學(xué)生間、師生間智慧和能力的互補(bǔ),促進(jìn)相互的心靈和感情的溝通。
人教版高中數(shù)學(xué)必修五教案篇七
初中新課程中數(shù)學(xué)知識點(diǎn)刪了很多要求,如“立方和、立方差”公式,“韋達(dá)定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點(diǎn)不作要求,但是從高中數(shù)學(xué)教學(xué)的實(shí)踐來看,學(xué)生掌握了這些知識點(diǎn)對學(xué)習(xí)新的知識有一定的促進(jìn)作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實(shí)際情況,做適當(dāng)?shù)难a(bǔ)充,同時(shí),初中學(xué)習(xí)的有理數(shù)乘方及運(yùn)算性質(zhì)和二次函數(shù),這些知識也要進(jìn)行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
2、思維能力和運(yùn)算能力的進(jìn)一步強(qiáng)化。
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實(shí)踐能力很強(qiáng),但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時(shí),由于初中大量使用計(jì)算器,學(xué)生的計(jì)算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強(qiáng)的化簡、變形、推理及運(yùn)算能力有一定的差距,從教學(xué)的實(shí)踐來看,學(xué)生作業(yè)中出現(xiàn)的大量錯誤與計(jì)算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實(shí)際情況,從高一開始就要切實(shí)提高學(xué)生的運(yùn)算能力。
3、抓住學(xué)科特點(diǎn),做好順利過渡。
高中數(shù)學(xué)知識量大,理論性、綜合性強(qiáng),同時(shí)高中課時(shí)少,學(xué)生基礎(chǔ)差等,知識的難度和對學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識綜合性較強(qiáng))。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強(qiáng)的閱讀能力、運(yùn)算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數(shù)學(xué)知識點(diǎn)較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實(shí)際情況及時(shí)調(diào)整教學(xué)方法和教學(xué)過程,使學(xué)生能順利進(jìn)入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
人教版高中數(shù)學(xué)必修五教案篇八
曾經(jīng)有同學(xué)問我,你是怎么學(xué)數(shù)學(xué)的,也沒見你做多少的練習(xí)題,可數(shù)學(xué)的成績不錯。我覺得課堂的學(xué)習(xí)是關(guān)鍵,要緊緊抓住課堂的45分鐘的時(shí)間。在這有限的時(shí)間內(nèi),是教師與學(xué)生的交流,這時(shí)候,作為學(xué)生你的思維要跟得上老師的變化,這個(gè)知識點(diǎn)的關(guān)鍵點(diǎn)在那兒,前后的聯(lián)系是什么,在聽課的過程中不能分心、走神,提高聽課的效率。為此,在每一堂課前,我都要做好以下幾項(xiàng)工作。
1、課前預(yù)習(xí)是關(guān)鍵。
相信我們學(xué)生都聽到過老師對我們的要求,要進(jìn)行課前預(yù)習(xí),不論什么課,這是所有的老師都會提的一個(gè)要求,可真正進(jìn)行課前預(yù)習(xí)的學(xué)生有多少呢,班里面我們也沒有統(tǒng)計(jì)過,不過我覺得有一半的學(xué)生預(yù)習(xí)了,就是不錯的了,另外,既使有的學(xué)生也預(yù)習(xí)了,只是走馬觀花的看一下書,那效果可想而知。
預(yù)習(xí)也要講究方法,在預(yù)習(xí)中發(fā)現(xiàn)了難點(diǎn),出現(xiàn)了自己解決不了的問題,這個(gè)就是聽課中的重點(diǎn),要做好標(biāo)記;通過預(yù)習(xí)還能發(fā)現(xiàn)自己沒有掌握住的舊知識,起到溫故而知新的作用,可以對知識起到查漏補(bǔ)缺的效果;另外,預(yù)習(xí)的過程也是一個(gè)自學(xué)的過程,有助于提高自己分析問題、解決問題的能力,將自己在預(yù)習(xí)中的理解和老師講解的進(jìn)行對照,不斷進(jìn)行改進(jìn),可以起到提高自己思維水平的作用。
2、科學(xué)聽課是保障。
所謂科學(xué)聽課也就是說在教師授課的過程中學(xué)生的表現(xiàn),是不是為這節(jié)課做好了準(zhǔn)備工作。在聽課的過程中要調(diào)動眼、耳、心、口、手等各個(gè)器官,全身心的投入到課堂學(xué)習(xí)中去,在聽課的過程中遇到重要的知識點(diǎn)同時(shí)又要做好筆記,但是不能因?yàn)楣P記的原因而影響到聽課,所以,這里面有一個(gè)科學(xué)合理安排聽課時(shí)間的問題。聽課的過程中是一個(gè)高度集中注意力的過程,但同時(shí)也是有張有弛;聽課的過程中也的聽的技巧,聽教師如何分析?如何歸納總結(jié)?如何突破難點(diǎn),結(jié)合自己在預(yù)習(xí)時(shí)又是如何理解的,相互比較,同時(shí)要用心思考,跟上教師的教學(xué)思路,能在教師的啟發(fā)和點(diǎn)撥下有所得,這是這一堂課最根本的關(guān)節(jié)所在。
3、做一定量的習(xí)題。
在數(shù)學(xué)的學(xué)習(xí)過程中,對于做多少習(xí)題并沒有確切的數(shù)據(jù),但有兩種傾向:一種是做大量的習(xí)題;另一種是做適當(dāng)?shù)牧?xí)題。做大量的習(xí)題的做法來源于題海戰(zhàn)術(shù),曾經(jīng)有一種說法,做題吧,在做題的過程中你就掌握了知識點(diǎn),誠然,多做題對于掌握知識是有好處的,但并不是題做的越多越好。在高中的學(xué)習(xí)過程中,時(shí)間非常緊,在有限的時(shí)間內(nèi)要學(xué)習(xí)好幾門知識,你數(shù)學(xué)題做的多了,難免會在其他科目上用時(shí)不夠,會對其他科目的學(xué)習(xí)造成影響。因此,大量的做題是不可取的。
在學(xué)習(xí)的過程中,我崇尚做適當(dāng)?shù)牧?xí)題,而且在實(shí)際的學(xué)習(xí)過程中我也是這樣做的。做題的過程中是一個(gè)舉一反三的過程,做會這一道題就掌握了這一類題目的做法,關(guān)鍵的問題是在做完這道題后的分析總結(jié),數(shù)學(xué)的題目太多了,你是不可能做完所有的題的,因此,我們在掌握知識點(diǎn)的時(shí)候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當(dāng)做完一道題后尤其是難度大的題目,我會靜下心來再從頭看一遍,把其中的關(guān)鍵點(diǎn)再熟悉一遍,雖然當(dāng)時(shí)看起來是費(fèi)了一點(diǎn)時(shí)間,但那收獲是很大的。以后再遇到這類題目的時(shí)候,解決起來就相對容易的多。
人教版高中數(shù)學(xué)必修五教案篇九
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式。
會從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過程.
人教版高中數(shù)學(xué)必修五教案篇十
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
教學(xué)重點(diǎn):型的不等式的解法;。
教學(xué)難點(diǎn):利用絕對值的意義分析、解決問題.
教學(xué)過程設(shè)計(jì)。
教師活動。
學(xué)生活動。
設(shè)計(jì)意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.。
二、新課。
【提問】如何解絕對值方程.。
【質(zhì)疑】的解集有幾部分?為什么也是它的解集?
【練習(xí)】解下列不等式:
(1);
(2)。
【設(shè)問】如果在中的,也就是怎樣解?
【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果中的是,也就是怎樣解?
【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來解.。
或
由得。
由得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式的解集表示為。
畫出數(shù)軸。
思考答案。
不等式的解集為。
或表示為,或。
筆答。
(1)。
(2),或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程()的解法.。
由淺入深,循序漸進(jìn),在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.。
針對解()絕對值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。
落實(shí)會正確解出與()絕對值不等式的教學(xué)目標(biāo).。
在將看成一個(gè)整體的關(guān)鍵處點(diǎn)撥、啟發(fā),使學(xué)生主動地進(jìn)行練習(xí).。
繼續(xù)強(qiáng)化將看成一個(gè)整體繼續(xù)強(qiáng)化解不等式時(shí)不要犯丟掉這部分解的錯誤.。
三、課堂練習(xí)。
解下列不等式:
(1);
(2)。
筆答。
(1);
(2)。
檢查教學(xué)目標(biāo)落實(shí)情況.。
四、小結(jié)。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集.。
五、作業(yè)。
1.閱讀課本含絕對值不等式解法.。
2.習(xí)題2、3、4。
課堂教學(xué)設(shè)計(jì)說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯誤,以提高學(xué)生的運(yùn)算能力.
人教版高中數(shù)學(xué)必修五教案篇十一
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個(gè)角的三角函數(shù)的運(yùn)算規(guī)律,可實(shí)現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識銜接起來使用。
重點(diǎn)難點(diǎn)。
重點(diǎn):幾組三角恒等式的應(yīng)用。
難點(diǎn):靈活應(yīng)用和、差、倍角等公式進(jìn)行三角式化簡、求值、證明恒等式。
人教版高中數(shù)學(xué)必修五教案篇十二
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實(shí)基礎(chǔ)。
學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力。
為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時(shí),動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力。可以從簡單的圖形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實(shí)形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
四、“轉(zhuǎn)化”思想的應(yīng)用。
解立體幾何的問題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
五、建立數(shù)學(xué)模型。
新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問題用數(shù)學(xué)語言抽象概括,再從數(shù)學(xué)角度來反映或近似地反映實(shí)際問題時(shí),所得出的關(guān)于實(shí)際問題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
從形狀的角度反映現(xiàn)實(shí)世界的物體時(shí),經(jīng)過抽象得到的空間幾何體就是現(xiàn)實(shí)世界物體的幾何模型。由于立體幾何學(xué)習(xí)的知識內(nèi)容與學(xué)生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實(shí)世界中的許多物體。他們直觀、具體、對培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學(xué)習(xí)時(shí),一方面要注意從實(shí)際出發(fā),把學(xué)習(xí)的知識與周圍的實(shí)物聯(lián)系起來,另一方面,也要注意經(jīng)歷從現(xiàn)實(shí)的生活抽象空間圖形的過程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。
人教版高中數(shù)學(xué)必修五教案篇十三
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學(xué)重難點(diǎn)。
利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
人教版高中數(shù)學(xué)必修五教案篇十四
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計(jì)算有關(guān)的生活實(shí)際問題。
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個(gè)三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時(shí)使新知識建立在已有知識的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。
《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個(gè)思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實(shí)際問題中去,對所學(xué)數(shù)學(xué)知識的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時(shí)卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實(shí)際情況,本章重視從實(shí)際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實(shí)際問題。
1.1正弦定理和余弦定理(約3課時(shí))
1.2應(yīng)用舉例(約4課時(shí))
1.3實(shí)習(xí)作業(yè)(約1課時(shí))
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測量問題的過程中,一個(gè)問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進(jìn)行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實(shí)際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達(dá)實(shí)習(xí)過程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實(shí)踐能力。教師要注意對于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對于實(shí)際測量問題的選擇,及時(shí)糾正實(shí)際操作中的錯誤,解決測量中出現(xiàn)的一些問題。
人教版高中數(shù)學(xué)必修五教案篇十五
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學(xué)重難點(diǎn)。
利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
將本文的word文檔下載到電腦,方便收藏和打印。
人教版高中數(shù)學(xué)必修五教案篇十六
1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點(diǎn)表示有理數(shù);;會求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。
【情感態(tài)度與價(jià)值觀】感受數(shù)形結(jié)合的.思想方法;
【教學(xué)重點(diǎn)】會說出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題。
(1)(出示投影1)問題:三個(gè)溫度計(jì)所表示的溫度是多少?
學(xué)生回答.。
(2)在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)。
(二)得出定義,揭示內(nèi)涵。
與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點(diǎn)。
(2)標(biāo)正方向。
(3)選取單位長度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫起)。
概念:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。
(三)強(qiáng)化概念,深入理解。
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫一個(gè)數(shù)軸。教師在黑板上畫。
(四)動手練習(xí),歸納總結(jié)。
1、在數(shù)軸上的點(diǎn)表示有理數(shù)。
一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。
明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示”
2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育。
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計(jì)回答問題。
(1)在數(shù)軸上表示的兩個(gè)數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
鞏固所學(xué)知識。
(五)、歸納小結(jié),強(qiáng)化思想。
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素。
2、數(shù)軸上兩個(gè)不同的點(diǎn)所表示的兩個(gè)有理數(shù)大小關(guān)系。
3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示。
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.21、2、3。
選作第4題。
人教版高中數(shù)學(xué)必修五教案篇十七
引用:本文《高中化學(xué)必修二教案(人教版)》來源于師庫網(wǎng),由師庫網(wǎng)博客摘錄整理,以下是的詳細(xì)內(nèi)容:開發(fā)利用金屬礦物和海水...《基本營養(yǎng)物質(zhì)》教案化學(xué)反應(yīng)的速率和限度化學(xué)能與熱能化學(xué)與資源綜合利用、環(huán)...最簡單的有機(jī)化合物dd...《生活中兩種常見的'有機(jī)...來自石油和煤的兩種基本...引用:師庫網(wǎng)溫馨提示本篇內(nèi)容來源于師庫網(wǎng),旨在用于課件制作交流,非盈利性質(zhì),僅供參考,針對本文的問題如需了解更詳細(xì),可留言或者聯(lián)系客服tags:教案、課件、師庫網(wǎng)、教案網(wǎng)、課件網(wǎng)
人教版高中數(shù)學(xué)必修五教案篇十八
專題八當(dāng)今世界經(jīng)濟(jì)的全球化趨勢。
通史概要:
當(dāng)今世界經(jīng)濟(jì)發(fā)展有兩個(gè)明顯的趨勢:一是世界經(jīng)濟(jì)區(qū)域集團(tuán)化,二是世界經(jīng)濟(jì)全球化。世界經(jīng)濟(jì)區(qū)域集團(tuán)化是最終實(shí)現(xiàn)經(jīng)濟(jì)全球化的重要步驟和途徑,經(jīng)濟(jì)全球化則是區(qū)域經(jīng)濟(jì)集團(tuán)化的最終歸宿。
世界經(jīng)濟(jì)區(qū)域集團(tuán)化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國家化、國際分工向縱深發(fā)展需要加強(qiáng)合作的結(jié)果,也是世界經(jīng)濟(jì)競爭激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國際間經(jīng)濟(jì)競爭和客觀上存在的分工。區(qū)域集團(tuán)化的發(fā)展分為三個(gè)階段:第一階段為五六十年代,世界經(jīng)濟(jì)集團(tuán)化的趨勢主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團(tuán)化成為一種世界經(jīng)濟(jì)現(xiàn)象。歐洲區(qū)域集團(tuán)化趨勢進(jìn)一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經(jīng)濟(jì)集團(tuán)也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團(tuán)化掀起新的浪潮,進(jìn)入了較高層次的經(jīng)濟(jì)一體化時(shí)期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟(jì)集團(tuán)。
世界經(jīng)濟(jì)全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢。它突出的表現(xiàn)在國際貿(mào)易、國際投資、國際金融和跨國公司的發(fā)展。經(jīng)濟(jì)全球化的過程中的問題是:在經(jīng)濟(jì)全球化的過程中,不可避免地把資本主義固有的矛盾擴(kuò)展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機(jī)、全球性的經(jīng)濟(jì)金融危機(jī)、恐怖組織活動猖獗等等,直接影響到人類的生存與發(fā)展。
我國在當(dāng)今世界經(jīng)濟(jì)發(fā)展趨勢中,作為發(fā)展中國家,應(yīng)該如何面對機(jī)遇和挑戰(zhàn),成了新時(shí)期經(jīng)濟(jì)發(fā)展人們共同關(guān)心的話題。從中國加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強(qiáng)同東盟的聯(lián)系的史實(shí)中,我們的態(tài)度是:在堅(jiān)持獨(dú)立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強(qiáng)國際的合作與交流,參與國際競爭,抓住機(jī)遇,接受挑戰(zhàn),在國際的競爭和合作中,提高我國的經(jīng)濟(jì)發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟(jì)發(fā)展趨勢這一經(jīng)濟(jì)現(xiàn)象,樹立正確的.發(fā)展觀。
一歐洲的聯(lián)合。
課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。
教學(xué)目標(biāo):
(1)知識與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟(jì)進(jìn)入“黃金時(shí)代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認(rèn)識歐洲聯(lián)盟成立對世界經(jīng)濟(jì)和政治格局的影響。
概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。
(2)過程與方法:通過討論西歐經(jīng)濟(jì)在二戰(zhàn)后進(jìn)入“黃金時(shí)代”的共同原因,進(jìn)一步思考中國的社會主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗(yàn),學(xué)習(xí)用聯(lián)系的方法看待問題,提高理論指導(dǎo)實(shí)踐的能力;通過分組學(xué)習(xí),搜集“歐共體”及“歐盟”成立的資料,了解整個(gè)歐洲走向聯(lián)合的過程,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。
(3)情感、態(tài)度與價(jià)值觀:通過對歐洲走向聯(lián)合這段歷史的學(xué)習(xí),認(rèn)識當(dāng)今國際社會國家間團(tuán)結(jié)協(xié)作的重要性,樹立國際意識;通過對歐洲走向聯(lián)合的史實(shí)的歸納,得出一個(gè)別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國的實(shí)際,進(jìn)一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現(xiàn)代化建設(shè)而奮斗的責(zé)任感。
教學(xué)課時(shí):1課時(shí)。
重點(diǎn)難點(diǎn):
重點(diǎn):歐洲走向聯(lián)合過程及影響。
難點(diǎn):歐洲走向聯(lián)合的原因。
教學(xué)建議:
1、本課共有三個(gè)方面的內(nèi)容,“西歐經(jīng)濟(jì)的'黃金時(shí)代'”主要講述:二戰(zhàn)后的20世紀(jì)50年代到60年代,西歐各國經(jīng)濟(jì)在恢復(fù)的基礎(chǔ)上,進(jìn)入調(diào)整增長期,被稱為西歐經(jīng)濟(jì)的“黃金時(shí)代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟(jì)一體化到政治一體化的發(fā)展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進(jìn)一步表明歐洲走向聯(lián)合的趨勢。
2、西歐經(jīng)濟(jì)高速發(fā)展的共同原因:第一,西歐各國進(jìn)行社會改革和政策調(diào)整。進(jìn)行社會改革,例如:推行福利制度,適當(dāng)改善人民的生活條件,緩和社會矛盾,穩(wěn)定社會秩序;進(jìn)行政策調(diào)整,如:將一些私人壟斷企業(yè)國有化,并建立有關(guān)國計(jì)民生的重要工業(yè)部門。這些政策的推行,促進(jìn)了西歐經(jīng)濟(jì)的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計(jì)劃的實(shí)施,解決了西歐戰(zhàn)后經(jīng)濟(jì)發(fā)展的啟動資金,西歐重工業(yè)在短時(shí)期內(nèi)完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對產(chǎn)業(yè)部門進(jìn)行了改造,使勞動生產(chǎn)率大大提高,從而有力地推動了經(jīng)濟(jì)的高速發(fā)展。
3、伴隨著歐洲經(jīng)濟(jì)合作的成功,歐洲經(jīng)濟(jì)不斷的恢復(fù),要求在國際上發(fā)揮更重要的作用。因而要加強(qiáng)在政治領(lǐng)域的合作成為歐洲各國的一致要求。面對二戰(zhàn)結(jié)束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個(gè)更加強(qiáng)大的團(tuán)體來維護(hù)自己的利益。于是在政治領(lǐng)域的合作很快便實(shí)施開來。
4、為進(jìn)一步加強(qiáng)歐洲共同體之間的經(jīng)濟(jì)合作與交流,減少共同體內(nèi)部成員國存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實(shí)現(xiàn)經(jīng)濟(jì)的聯(lián)合,從而進(jìn)一步加強(qiáng)歐洲各國之間的政治合作。
二、發(fā)展的亞太。
課標(biāo)要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織為例,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。
教學(xué)目標(biāo):
(1)知識與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟(jì)合作組織建立的過程,探討亞太國家加強(qiáng)合作的途徑與方式。
(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴(kuò)大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學(xué)習(xí)用比較的方法認(rèn)識歷史問題;通過上網(wǎng)等途徑搜集中國參加apec會議的資料,多渠道去了解和認(rèn)識apec建立的史實(shí)及影響。
(3)情感、態(tài)度與價(jià)值觀:通過對東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟(jì)一體化進(jìn)程的學(xué)習(xí)和了解,體會當(dāng)今世界國家間加強(qiáng)合作、競爭與發(fā)展的重要性,樹立合作與競爭的意識。
教學(xué)課時(shí):1課時(shí)。
重點(diǎn)難點(diǎn):
重點(diǎn):通過了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟(jì)合作組織,認(rèn)識當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。
難點(diǎn):中國積極參與世界區(qū)域經(jīng)濟(jì)組織的意義。
教學(xué)建議:
1、在經(jīng)濟(jì)全球化的進(jìn)程中,亞太地區(qū)的經(jīng)濟(jì)集團(tuán)化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟(jì)集團(tuán)有兩個(gè)分別在該地區(qū)。這一地區(qū)成為當(dāng)今世界上經(jīng)濟(jì)發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個(gè)經(jīng)濟(jì)區(qū)域集團(tuán)為例,介紹了當(dāng)今世界經(jīng)濟(jì)區(qū)域集團(tuán)化發(fā)展趨勢。每個(gè)集團(tuán)內(nèi)部有著自身的規(guī)則的同時(shí)也不斷與其它區(qū)域集團(tuán)相聯(lián)系,從而使世界經(jīng)濟(jì)形成了密不可分的一個(gè)整體。
2、東南亞國家聯(lián)盟自1967成立以來,已經(jīng)歷時(shí)近三分之一世紀(jì)。東盟在維護(hù)和促進(jìn)各成員國相互間的政治和經(jīng)濟(jì)合作,實(shí)現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經(jīng)濟(jì)增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強(qiáng)了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。
3、日本經(jīng)濟(jì)的崛起,特別是歐洲經(jīng)濟(jì)一體化實(shí)施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經(jīng)濟(jì)的內(nèi)在動力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價(jià)值觀念、風(fēng)俗習(xí)慣等又頗相似;經(jīng)濟(jì)互補(bǔ)性強(qiáng);相互貿(mào)易基礎(chǔ)良好,美、加、墨3國具有實(shí)行經(jīng)濟(jì)一體化的必要性,又具有實(shí)行經(jīng)濟(jì)一體化的可能性。美國認(rèn)為要取得世界經(jīng)濟(jì)的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟(jì)區(qū)域集團(tuán),才能在經(jīng)濟(jì)全球化大潮中立于不敗之地。
4、二十世紀(jì)七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對外開放經(jīng)濟(jì)政策和經(jīng)濟(jì)迅速發(fā)展為亞太區(qū)域經(jīng)濟(jì)合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟(jì)的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟(jì)合作創(chuàng)造了條件。歐共體統(tǒng)一市場和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟(jì)合作的方向發(fā)展。亞太經(jīng)合組織的主要活動,為各成員提供區(qū)域經(jīng)濟(jì),科技,貿(mào)易和發(fā)展等方面多邊合作的機(jī)會,交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗(yàn),促進(jìn)本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運(yùn)作模式均區(qū)別于歐盟和nafta,有自身的特點(diǎn),這些特點(diǎn)適應(yīng)了apec各成員國經(jīng)濟(jì)發(fā)展的狀況和經(jīng)濟(jì)運(yùn)行模式。
三、經(jīng)濟(jì)全球化的世界。
課標(biāo)要求:
(1)以“布雷頓森林體系”建立為例,認(rèn)識第二次世界大戰(zhàn)后以美國為主導(dǎo)的資本主義世界經(jīng)濟(jì)體系的形成。
(2)了解世界貿(mào)易組織(wto)的由來和發(fā)展,認(rèn)識它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用。了解中國參加世界貿(mào)易組織(wto)的史實(shí),認(rèn)識其影響和作用。
(3)了解經(jīng)濟(jì)全球化的發(fā)展趨勢,探討經(jīng)濟(jì)全球化進(jìn)程中的問題。
教學(xué)目標(biāo):
(1)知識與能力:了解“布雷頓森林體系”建立的基本史實(shí),分析其影響;簡述世界貿(mào)易組織(wto)的由來和發(fā)展,認(rèn)識它在世界經(jīng)濟(jì)全球化進(jìn)程中的作用;了解中國參加世界貿(mào)易組織(wto)的史實(shí),認(rèn)識其影響和作用;概述經(jīng)濟(jì)全球化的發(fā)展趨勢,探討經(jīng)濟(jì)全球化進(jìn)程中的問題。
(2)過程與方法:閱讀課文和查找中國加入世貿(mào)組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿(mào)易組織建立的必要性并對中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟(jì)全球化對本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟(jì)全球化出現(xiàn)的問題?從多角度去分析歷史問題。
人教版高中數(shù)學(xué)必修五教案篇十九
1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點(diǎn)表示有理數(shù);;會求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】 經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系
【情感態(tài)度與價(jià)值觀】 感受數(shù)形結(jié)合的思想方法;
【教學(xué)重點(diǎn)】會說出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題
(1)(出示投影1)問題:三個(gè)溫度計(jì)所表示的溫度是多少?
學(xué)生回答.
(2)在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容―數(shù)軸(板書課題)
(二)得出定義,揭示內(nèi)涵
與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點(diǎn)
(2)標(biāo)正方向
(3)選取單位長度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫起)。
概念:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。
(三)強(qiáng)化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫一個(gè)數(shù)軸。教師在黑板上畫
(四)動手練習(xí),歸納總結(jié)
1、在數(shù)軸上的點(diǎn)表示有理數(shù)。
一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。
明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示”
2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計(jì)回答問題
(1)在數(shù)軸上表示的兩個(gè)數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學(xué)知識
(五)、歸納小結(jié),強(qiáng)化思想
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個(gè)不同的點(diǎn)所表示的兩個(gè)有理數(shù)大小關(guān)系
3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.2 1、2、3
選作第4題
人教版高中數(shù)學(xué)必修五教案篇二十
一)、培養(yǎng)良好的學(xué)習(xí)興趣。
1、課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。
2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點(diǎn)解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時(shí)回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價(jià),變?yōu)楸薏邔W(xué)習(xí)的動力。
3、思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。
5、把概念回歸自然。所有學(xué)科都是從實(shí)際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實(shí)生活,如角的概念、直角坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實(shí)際生活中抽象出來的。只有回歸現(xiàn)實(shí)才能對概念的理解切實(shí)可靠,在應(yīng)用概念判斷、推理時(shí)會準(zhǔn)確。
二)、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。
三)、有意識培養(yǎng)自己的各方面能力。
數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計(jì)算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時(shí)學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實(shí)踐活動,如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動。平時(shí)注意觀察,比如,空間想象能力是通過實(shí)例凈化思維,把空間中的實(shí)體高度抽象在大腦中,并在大腦中進(jìn)行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設(shè)計(jì)“智力課”和“智力問題”比如對習(xí)題的解答時(shí)的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達(dá)到自己各方面能力的全面發(fā)展。