寵物是一種給人們帶來快樂和陪伴的伙伴,它們能夠減輕壓力,增加幸福感。學習方法對于提高學習效果至關重要,我們應該掌握一些科學的學習方法。以下是小編為大家搜集的相關資料,供大家參考。
圓錐的體積教學設計及反思篇一
今天上了《圓錐的體積》這節(jié)課,反思整堂課的教學,自我感覺較為滿意的是以下幾點:
假設和猜想是科學的天梯,是科學探究的重要一環(huán)。任何發(fā)明創(chuàng)造我想都是離不開假設和猜想的。基于這樣的認識,結合本節(jié)課教學內(nèi)容的特點,我在教學中把生活中的故事引入數(shù)學課堂,讓學生大膽猜想它們的體積可能會有什么樣的關系?使課堂充滿生機、樂趣,激發(fā)了學生的求知欲,然后讓學生借助學具進行實驗、探究。事實證明這樣教學設計不僅僅是能夠培養(yǎng)學生的猜測意識,更重要的是充分調動了所有學生的積極性,大家探究的欲望強烈,為本節(jié)課的成功教學奠定了基礎。
數(shù)學不僅是思維科學,也是實驗科學。教學中,學生能通過觀察、猜測、實驗、驗證、推理與交流等數(shù)學活動,積極主動地發(fā)現(xiàn)了等底等高的圓柱與圓錐體積間的關系,進而推導出圓錐體積的計算公式:v=1/3sh。在整個教學過程中,我非常重視讓學生參與教學的.全過程,學生始終是活動的主體。同時引導學生用科學的態(tài)度去對待這個實驗,實事求是,認真分析自己的實驗結論,培養(yǎng)了學生科學的實驗觀。
教學中“圓柱和圓錐不等底等高,他們的體積還是三倍的關系嗎?”這一教學環(huán)節(jié)不是預先設計的。它是課堂中隨機生成的,卻飽含著教師和學生真實的、情感的、智慧的、思維和能力的投入,有互動的過程,氣氛相當活躍。在這個過程中既有資源的生成,又有過程狀態(tài)生成,讓學生在實踐中進一步明確了:只有等底等高,圓錐的體積才能是圓柱體積的三分之一。總之,這節(jié)課,每個學生都經(jīng)歷了“猜想———實驗———發(fā)現(xiàn)”的自主探究學習的過程。學生獲得的不僅是鮮活的數(shù)學知識,獲得更多的是科學探究的學習方法和研究問題的方法,孩子們不僅收獲了知識更體驗到了探究成功的喜悅。
圓錐的體積教學設計及反思篇二
使學生初步掌握圓錐體積的計算公式。
并能運用公式正確地計算圓錐的體積,發(fā)展學生的空間觀念。
等底等高的圓柱和圓錐,水和沙,多媒體課件。
一課時。
一、復習。
1、圓錐有什么特征?(課件出示)。
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數(shù)學學習中的應用。
二、導人新課。
我們已經(jīng)學過圓柱體積的計算公式,那么圓錐的體積是不是和圓柱體積有關呢?今天我們就來學習圓錐體積的計算。
三、新課。
1、教學圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
學生分組實驗。
匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。
多指名說。
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找?guī)酌瑢W說。
師:圓柱的體積等于什么?
生:等于“底面積×高”。
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
師:用字母應該怎樣表示?
然后板書字母公式:v=1/3sh。
師:在這個公式里你覺得哪里最應該注意?
1/3×19×12=76((立方厘米))。
答:這個零件體積是76立方厘米。
做一做:課件出示,學生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積v?
3、已知圓錐的底面直徑d和高h,如何求體積v?
4、已知圓錐的底面周長c和高h,如何求體積v?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2:(課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)。
判斷:課件出示,學生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大()。
2、圓錐的體積等于和它等底等高的圓柱體積的()。
3、正方體、長方體、圓錐體的體積都等于底面積×高。()。
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米()。
四、教師小結。
這節(jié)課我們學習了哪些知識?你還有什么問題嗎?
五、作業(yè)。課本練習九中7、8題。
圓錐的體積教學設計及反思篇三
圓錐的體積是在學生掌握了圓柱的特征及圓柱的體積等有關知識的基礎上進行教學的。
=1/3sh(知道底面積和高)。
=1/3πr2h(知道半徑和高)。
=1/3π(d*2)2h(知道直徑和高)。
=1/3π(c*2*π)2h(知道周長和高)。
在教學中,我提供的是兩組不同的學具,目的是讓學生通過自己的親身實踐,親自動手,親身體會圓柱與圓錐體積之間的關系,這樣利于培養(yǎng)學生自主探索,與同學之間合作學習,共同解決問題的能力。學生在此項活動中,不僅收獲了知識的來龍去脈,還體會到了與同學合作,共享成果的幸福喜悅。
由于課前把制作的u盤帶回家,未帶回來,所以導致課上無法通過多媒體課件的形式,把動手操作的完整過程給學生進行展示。
上課前的一點一絲疏漏都要力求避免,課前準備真的是對于教師來說至關重要,缺少哪一環(huán)都會在課堂上留下遺憾。
圓錐的體積教學設計及反思篇四
教學圓錐的體積是在掌握了圓錐的認識和圓柱的體積的基礎上教學的。教學目標是讓學生通過觀察實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。由于六年級的學生對圓錐的認識和圓柱的體積的知識掌握較牢固,學生感到簡單易懂,因此學起來并不感到困難。
新課一開始,我用課件出示一個圓柱體和一個圓錐體讓學生觀察并猜測圓錐的體積和什么有關,學生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學生的學習興趣,使學生明白學習目標。從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后課件演示實驗過程,讓孩子從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,這樣學生對知識的掌握就水到渠成了。對圓錐的體積建立了鮮明的印象之后,再應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
當然,教學是一門缺陷藝術,在教學之后我感到遺憾。
的是,沒讓學生動手實際操作,我想如果每個小組準備一套學具,讓他們以小組合作學習的方式使每個學生都能真切的參與到探究中去,最大限度的發(fā)揮每個學生的自主學習的能力,這樣的學習不僅使學生學會更多的知識,更重要的是能培養(yǎng)學生的能力。1、探究圓錐體積計算方法的學習過程中,學生獲得的不僅是新活的數(shù)學知識,同時也獲得了更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。
2、每個學生都經(jīng)歷“猜想估計---設計實驗驗證---發(fā)現(xiàn)算法”的自主探究學習的過程,在教師適當?shù)囊龑陆o于學生根據(jù)自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。讓每個學生都經(jīng)歷一次探究學習的過程。
通過本節(jié)課的教學,讓我真正體會到了讓學生通過動手實踐去發(fā)現(xiàn)新知識的好處,學生自己去發(fā)現(xiàn)的新知識,是一種真正的理解,不是老師硬灌輸給他的,他們能靈活用知識解決問題,這使我熟悉到新課改提倡的:“動手實踐、自主探索、合作交流是學生學習數(shù)學的重要方式?!霸诮窈蟮慕虒W中我將用新課程的理念指導我的教學,提高課堂教學效率。
圓錐的體積教學設計及反思篇五
圓錐的體積是在學習了圓錐的認識的基礎上進行教學的。
這節(jié)課我是這樣設計的:第一部分,復習圓錐的特征和圓柱的體積=底面積×高。反思:復習舊知識之間的聯(lián)系,便于運用已學知識推動新知識的學習,為學習新知識做準備。
第二部分,便于圓柱體積的計算公式,先讓學生用轉化的思想大膽猜測,能否把體積計算方法轉化成已學過的立體圖形來推導圓錐體積公式呢?學生猜測之后,讓學生拿出手中等底等高的圓柱體,然后同桌討論得出結論,全班交流。再進行第二次實驗,同桌交換圓柱或圓錐倒進沙子之后,同桌討論,全班交流,老師引導學生兩次實驗的結論有什么不同,經(jīng)過學生的討論,師生歸納出:圓錐的體積等于等底等高的圓柱體積的三分之一。并強調v=3sh的前提條件是等底等高。
反思:這一環(huán)節(jié)讓學生用轉化的思想猜測,激發(fā)學生的學習興趣,調動學生的探究欲望。緊接著讓學生兩次動手實驗,親自體驗知識的探究過程。符合小學生的認知規(guī)律,便于學生主動地獲取知識,掌握正確的學習方法。通過實驗,學生參與了知識的形成過程,得出了只有在等底等高的情況下圓錐的體積是圓柱的三分之一,否則這個結論不成立。
圓錐的體積教學設計及反思篇六
《圓錐的體積》一課的教學,是在學生掌握了圓錐的認識和圓柱的體積的基礎上進行的。多年的教學,讓我學習和累計了很多的教學經(jīng)驗。教學時我先生活故事導入激發(fā)學生的學習興趣,再讓學生大膽的猜想圓錐的體積公式,然后通過實驗操作來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。
新課一開始,我就利用教師出示一堆煤,師:將這堆煤倒在地上,會變成什么形狀情境導入,教師再演示削鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形,讓學生觀察,猜測圓錐的體積和什么有關,由于課件很形象直觀,學生很快聯(lián)系到了圓柱的體積,而且很容易想到應該是幾分之幾的關系。在猜想中學生的學習興趣高漲,更明確了學習的目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗,讓孩子親歷教學的驗證過程,從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
小學數(shù)學教學中的情感發(fā)展主要包括學生對數(shù)學、數(shù)學學習活動的興趣;自信心和意志力,學習數(shù)學的態(tài)度與學習習慣。本節(jié)課的教學,擺脫了傳統(tǒng)“灌”的教學,從引導學生發(fā)現(xiàn)問題、探索問題,學生在發(fā)現(xiàn)中激起興趣,從探索中尋找快樂,然后又應用知識解決問題。學生經(jīng)歷了一個探索性的學習過程,不知不覺地掌握了知識,發(fā)展了能力,增進了對數(shù)學的情感。學習變成了一個賞心悅目的活動。
小學數(shù)學教材中,含有大量思想教育因素,是對學生進行教育的良好素材。教師在教學數(shù)學知識的同時,要注意發(fā)揮教材本身思想教育功能,不失時機地、潛移默化地滲透思想教育活動是兒童認識數(shù)學的重要方式。新課改提倡學生的自主活動,把數(shù)學學習的主動權交給學生,鼓勵每個學生積極參與教學活動,在教學中創(chuàng)設豐富多彩的活動情境,讓學生親自實踐,大膽探索。
練習設計從基本題入手,過渡到情境題,發(fā)展到綜合解決實際問題,這個過程中訓練了學生的解題能力,培養(yǎng)了運用所學知識解決實際問題的能力。
在教學后感覺到遺憾的是,由于教具準備不足的.關系,學生參與以小組合作學習的面小,小組合作分工不太合理,使每個學生不是全身心投入到探究實驗中去。這樣少部份學生的學習參與積極性不高,有點被動、遺憾進行學習,沒有最大限度的發(fā)揮每個學生的自主學習的能力。這樣的學習雖然是培養(yǎng)了學生的能力,但合作意識還需加強,學生小組合作完成試驗的默契還需加強。
圓錐的體積教學設計及反思篇七
本節(jié)課在學習圓柱的體積的基礎上,再學習圓錐的體積,學生感到非常簡單易懂,因此學起來并不感到困難。但教學過后,仍感到有許多不盡人意之處,當然也有許多收獲。
2、是在實驗時,讓學生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學習,學生學的活,記得牢,即發(fā)揮教師的主導作用,又體現(xiàn)了學生的主體地位。學生在學習的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學習體驗。
3、探究圓錐體積計算方法的學習過程,學生可以不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數(shù)學知識,同時也獲得了更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。
4、每個學生都經(jīng)歷“猜想---設計實驗驗證---發(fā)現(xiàn)算法”的自主探究學習的過程,在教師適當?shù)囊龑陆o于學生根據(jù)自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。讓每個學生都經(jīng)歷一次探究學習的過程。
1、許多學生在計算過程中常忘記除以3,需要加強練習。
2、許多學生在計算中出現(xiàn)錯誤,計算能力不過關,口算也不過關,導致計算失敗。
3、在學生進行倒沙實驗時,應該事先讓學生準備好充分的學具,比如,準備一個圓柱,然后做一個和圓柱等底等高的圓錐,在做一個等底不等高的圓錐或者等高不等底的,這樣學生就比較明顯的看出與圓柱等底等高的圓錐的體積是圓柱體積的三分之一。
4、一節(jié)好課在教學時要層次清楚,步步深入,重點突出。應注意激發(fā)學生的求知欲。要有全體學生的積極參與,突出學生的主體作用。我在這幾個方面都還要加強。
圓錐的體積教學設計及反思篇八
《圓錐的體積》是九年義務教育六年制小學數(shù)學第十一冊第三單元的內(nèi)容。
1、通過讓學生小組合作探究,利用不同的方法測量出圓錐的體積。體驗到計算圓錐體積的計算公式v=1/3sh是最簡便的方法。
2、鍛煉學生的操作能力,估算能力,評價能力,更好的發(fā)展他們的創(chuàng)新能力。
3、培養(yǎng)學生的合作意識及主動探索知識的精神。
讓學生自己親身體驗到計算圓錐體積的不同方法。從而理解計算公式v=1/3sh,并感受到計算公式的簡便。
教學難點:能利用不同方法計算不同物體的體積。知識的活學活用。
1、個學生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。
2、教學軟件。
一、創(chuàng)設情景,激趣引新。
1、首先教師手中拿一圓柱體問:“同學們,老師想知道這個圓柱體的體積你們能幫助我嗎?”
(學生踴躍舉手說明??梢韵葴y量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)
2、教師表示贊同,并抓住這一契機拿出于剛才圓柱等底等高的圓錐,問:“那老師這里還有一個圓錐體,它的體積應該怎樣計算呢?你們知道嗎?”(學生齊答不)那你們想不想研究呢?(學生齊答想)好,下面我們就一起來研究圓錐的體積該怎樣計算。
二、小組合作,探究學習。
1、動手操作,測量圓錐體的體積。
要求:每組同學,利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測量出自己組內(nèi)的圓錐體的體積。測量物體是容器的厚度不計。
3、分組匯報不同的方法。
〈學生在匯報時可邊講解邊示范〉
方法一:可以利用量杯。首先把圓錐體容器內(nèi)裝滿水,然后把它倒入量杯內(nèi),我們看到水面的刻度就是水的體積也就是圓錐體的體積。
方法二:利用手中的一立方厘米的小木塊進行估算。
方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時看容器空出來的地方為長方體,用一立方分米減去長方體的體積就可以得到圓錐體的體積了。
〈設計意圖:通過討論研究和動手操作,發(fā)展學生的創(chuàng)新能力,和解決實際問題的能力?!?BR> (2)學生再次在小組內(nèi)操作探究。
(3)匯報結論。
(4)微機演示。
當?shù)鹊撞坏雀邥r,當?shù)雀卟坏鹊讜r,當?shù)缀透叨疾幌嗟葧r,出現(xiàn)的結果是怎樣的。
4、評價以上各種辦法
同學們的結論是用公式計算比較方便。
三、解決實際問題
(問題一)
1、各小組量一量,算一算自己組內(nèi)的圓錐體的體積。(測量,計算時都要保留整數(shù))
2、匯報結果。
先測量出圓錐體的直徑,算出底面積。再測量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶劑可看作體積)
(問題二)
2、匯報結果。
用每立方厘米裝大米的克數(shù)乘圓錐的體積。算式:0.9x262≈236克
3、驗證計算結果
用稱稱一稱,比較一下結果。
4、討論兩次結果為什么不同。
由于測量時厚度不計,計算時是近似值。都存在誤差。
〈設計意圖:通過測量,計算等環(huán)節(jié),發(fā)展學生的應用意識及估算的能力?!?BR> (問題三)
利用圓錐體積公式計算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(問題四)
計算不規(guī)則物體體積或容積。(直說出計算的方法即可)
1、用什么方法計算出葫蘆能裝多少水?
2、胡蘿卜的體積怎樣計算?
3、不規(guī)則的零件體積計算?
四、總結全課
說說你的收獲,鼓勵學生學習知識要活學活用,大膽動腦,勇于創(chuàng)新。
圓錐的體積教學設計及反思篇九
1、通過分小組倒沙的實驗,使學生自主探索圓錐體積和圓柱體積之間的關系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關圓錐體積計算的簡單問題。
2、借助已有的生活和學習經(jīng)驗,在小組活動過程中,培養(yǎng)學生的動手操作能力和自主探索能力。
3、通過小組活動,實驗操作,巧妙設置探索障礙,激發(fā)學生的自主探索意識,發(fā)展學生的空間觀念。
掌握圓錐體積的計算公式。
1、理解圓錐體積公式的'推導過程;
2、掌握圓錐體積計算方法并能運用解決簡單的實際問題。
1、學生預習教材;
2、教師準備等底等高的圓柱和圓錐形容器若干個,沙土,直尺,平板。
一、復習
1、圓柱的體積公式是什么?(學生交流后做幻燈片中的練習題)
2、說一說圓錐有哪些特征。
a、出示實物圖,學生說一說生活中的圓錐形物體
b、總結圓錐的特征,學生齊讀。
二、導入新課
1、幻燈出示一圓錐形沙堆
2、師:操場上,同學們要計算這堆沙子的體積,怎么計算呢?
引出課題:這就是這節(jié)課我們要探索的問題
3、板書課題
三、探索新知
1、學習圓錐體積的推導公式
(1)思考:圓柱的體積公式是怎樣推導出來的?(學生交流討論,教師及時鼓勵學生回答)
(2)師:我們能不能也通過已學過圖形來求圓錐的體積呢?
學生小組討論交流
(3)師:有的同學提出了做實驗的方法,那么需要哪些器材呢?
學生交流后,幻燈出示實驗器材
(4)師:用這些器材怎樣做實驗呢?
學生小組討論后,教師:下面,我們就來試一試這種方法
(5)學生做實驗
a、觀察自己手中的圓柱與圓錐,討論他們的共同點。(等底等高)
師:下面的時間,請同學們按照實驗報告單的步驟做實驗,并將結果填入實驗報告單中。(教師巡視指導)
b、集體交流實驗結論,大屏幕演示結果
c、想一想:通過實驗你發(fā)現(xiàn)了什么?
要求一個圓錐的體積,必須具備哪兩個條件?
明確:求圓錐的體積,圓錐的底面積和高是必備的直接條件。
(6)練習
2、拓展內(nèi)容
(2)學生分小組討論,填寫表格。(教師巡視指導)
(3)集體交流,大屏幕展示結果
(4)練習:
3、鞏固練習
三、拓展知識
1、出示幾組不同的情況,指定每組完成一項
2、展示結果
3、練習
四、小結
師:同學們,今天這節(jié)課你都學會了什么?
學生交流回答,教師板書
五、作業(yè)設計
六、板書設計
圓錐的體積
等底等高的圓錐和圓柱,
圓錐的體積是圓柱體積的
圓錐的體積教學設計及反思篇十
一、復習導入。
1、怎樣計算圓柱的體積?(板書公式)
2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?
3、出示一個圓錐,請學生說說圓錐的特征。
4、導入:前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積應怎樣計算呢?今天這節(jié)課我們就來研究這個問題。(板書課題)
二、動手測量,大膽猜想。
1、動手測量,找圓錐和圓柱的底和高的關系。
2、學生動手測量,教師巡視。給予指導。
3、交流得出結論:圓柱和圓錐等底等高。
4、猜想等底等高的圓柱和圓錐的體積之間有什么關系?
三、實驗操作,推導出圓錐體積計算公式。
1、實驗操作。
師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。
2、學生分組實驗,教師巡視。
3、匯報交流,你們組是怎么做實驗的?通過實驗你發(fā)現(xiàn)了什么?
4、強調等底等高。
5小結:不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結論)
6、練習(出示)
(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是()立方分米。
(2)一個圓錐的體積是1.8立方分米,與它等底等高的圓柱的體積是()立方分米。
7、得出圓錐的體積計算公式。
8、用字母表示圓錐的體積計算公式。
三、鞏固練習。
1、計算下面圓錐的體積。(只列式不計算)
底面積是6.28平方分米,高是9分米。
底面半徑是6厘米,高是4.5厘米。
底面直徑是4厘米,高是4.8厘米。
底面周長是12.56厘米,高是6厘米。
2、填空。
a圓錐的體積=(),用字母表示是()。
b圓柱體積的與和它()的圓錐的體積相等。
c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。
d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。
3、判斷。(用手勢表示)
a圓柱體的體積一定比圓錐體的體積大()
b圓錐的體積等于和它等底等高的圓柱體的()
c正方體、長方體、圓錐體的體積都等于底面積×高。()
d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()
四、全課小結。
師:今天這結課學習了什么?通過今天的學習研究你有什么收獲?
五、解決實際問題。
在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數(shù)保留整噸數(shù))
圓錐的體積教學設計及反思篇十一
本節(jié)課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發(fā)展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。
本節(jié)內(nèi)容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經(jīng)歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養(yǎng)學生抽象的邏輯思維能力,激發(fā)學生的想象力.
數(shù)學課程標準中指出:應放手讓學生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發(fā)展空間觀念,從而提高學生自主解決問題的能力。
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。
圓錐體積公式的理解,并能運用公式求圓錐的體積。
圓錐體積公式的推導
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對 于新的知識教學,他們一定能表現(xiàn)出極大的熱情。
試驗探究法 小組合作學習法
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
1課時
一、回顧舊知識
1、你能計算哪些規(guī)則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
設計意圖通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
二、創(chuàng)設情景 激發(fā)激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
設計意圖以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究 合作學習(探討圓柱與圓錐體積之間的關系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數(shù)學專用名詞:等底 等高
設計意圖通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
四、實踐運用 提升技能
2、口答題:題目內(nèi)容見多媒體展示獨立思考---抽生匯報---學生評議
設計意圖通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。
五、談談收獲:這節(jié)課你學到了什么呢?
六、課堂作業(yè):
1、做在書上作業(yè):練習四 第4、7題
2、坐在作業(yè)本上作業(yè):練習四 第3題
圓錐的體積教學設計及反思篇十二
人教版九年義務教育小學數(shù)學教科書第十二冊。
這部分知識是學生在有了圓錐的認識和圓柱體積相關知識的基礎上進行教學的。在知識與技能上,通過對圓錐體的研究,經(jīng)歷并理解圓錐體積公式的推導過程,會計算圓錐的體積;在方法的選擇上,抓住新舊知識間的聯(lián)系,通過猜想、課件演示、實踐操作,從經(jīng)歷和體驗中驗證,讓學生在自主探索與合作交流過程中真正理解和掌握基本的數(shù)學知識與技能,數(shù)學思想和方法,使學生真正成為學習的主人。
1、使學生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關簡單的實際問題。
2、讓學生經(jīng)歷猜想——驗證,合作——探究的教學過程,理解圓錐體積公式的推導過程,體驗轉化的思想。
3、培養(yǎng)學生動手操作、觀察、分析、推理能力,發(fā)展空間觀念,滲透事物是普遍聯(lián)系的唯物辯證思想。
[點評:知識與技能目標的設計全面、具體、有針對性。不但使學生掌握圓錐體積的計算公式,而且培養(yǎng)了學生運用圓錐體積公式解決生活中的實際問題的能力,使學生體會到數(shù)學與生活的密切聯(lián)系注。并注重對學生“猜想——————驗證”、“合作——————探究”等學習方式的培養(yǎng)及“轉化”數(shù)學思想方法的滲透;同時關注學生空間觀念的培養(yǎng)及唯物辯證思想的滲透。
掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。
理解圓錐體積公式的推導過程及解決生活中的實際問題。
一、 創(chuàng)設情境導入新課。
2、引導學生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學可以同桌交流,共同研究。(組織學生先獨立思考,然后同桌討論交流,最后匯報自己的想法。)
3、教師出示一個圓錐體的木塊引導學生明確前面所想的方法太麻繁、不實用。并鼓勵學生研究出一種簡便快捷的方法來求圓錐的體積。
二、經(jīng)歷體驗,探究新知
(一)滲透轉化,幫助猜想
1、先組織學生自由暢談圓錐的體積可能會與誰有關(圓柱)。先給學生獨立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導學生回憶圓柱體積公式的推導過程。
2、組織學生拿出準備好的圓柱體鉛筆和轉筆刀來削鉛筆,同時教師也隨著學生一起來做。教師做好后要及時巡視,直到學生將鉛筆削得尖尖的為止。然后引導學生認真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關系。(削好后的圓柱與圓錐等底不等高,體積無關。)此時,教師要參與到小組討論中,及時引導學生發(fā)現(xiàn)削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關。組織學生自己的話來總結。最后,將自己的發(fā)現(xiàn)進行匯報。
(二)小組合作,實驗驗證。
1、教師發(fā)給每組學生一個準備好的等底等高的圓柱和圓錐、沙了,組織學生拿出等底等高的圓柱和圓錐進行實驗。實驗前小組成員進行組內(nèi)分工,有的進行操作,有的記錄……實驗中教師要及時巡視指導并參與到小組實驗中去及時了解學生實驗的進展情況。并指導幫助學生順利完成實驗。
2、實驗后組內(nèi)成員進行交流。交流的過程中,要引導學生注重傾聽別人的想法,并說出自己不同的見解。
3、首先各小組派代表進行匯報,其它小組可以補充。然后全班進行交流實驗結果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導出圓錐的體積公式。預設板書如下:
概括板書:
等底到高
v圓柱=sh v圓錐= 1/3sh
4、深化公式。組織學生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預設板書如下:
v =1/3πr2h v =1/3(c/2π)2h v =1/3(d/2)2h
5、教師組織學生獨立完成書中例題后集體訂正。
(三)看書質疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。
三、鞏固新知,拓展應用。
1、判斷并說明理由
(1)圓柱體積是圓錐體積的3倍( )
(2)一個圓錐的高不變,底面積越大,體積越大。( )
(3)一個圓錐體的高是3分米,底面積10平方分米,它的體積是30立方分米。( )
組織學生打手勢判斷后說明理由,并強調圓錐的體積是圓柱體積的1/3是以等底等高為前提的。
2、求下列圓錐的體積(口答,只列式,不計算)
s=4平方米,h=2平方米
r=2分米,h=3分米
d=6厘米,h=5厘米
組織學生根據(jù)圓錐體積公式解答。
3、實踐與應用:
學校操場有一堆圓錐沙子,求它的體積需要什么條件,你有什么好辦法?
組織學生進行討論,求圓錐體的沙堆的體積需要什么條件后并談如何來測量這些所需條件,有條件的可領學生實地操作一下。再求體積。
四、課后總結,感情升華。
這節(jié)課你有什么收獲?你是怎樣獲得的?
[總評:
1、鉆研教材,創(chuàng)造性地使用教材。
教師在充分了解學生、把握課程標準、教學目標、教材編寫意圖的基礎上,根據(jù)學生生活實際和學習實際,有目的地對教材內(nèi)容進行改編和加工。如學生削鉛筆這一活動的設計,學生從“削”的過程中體驗到圓柱與圓錐的聯(lián)系;再如動手實驗這一環(huán)節(jié)的設計,使學生在觀察、比較、動手操作,合作交流中理解掌握新知。創(chuàng)造性地融入一些生活素材,加強了數(shù)學與生活的密切聯(lián)系。
2、注重數(shù)學思想方法的滲透。
數(shù)學思想方法是數(shù)學知識的精髓,又是知識轉化為能力的橋梁。新課伊始,便讓學生自己想辦法求圓錐的體積,此時學生便想辦法將圓錐體的容器裝滿水后倒入圓柱或長(正)方體的容器中,從而求出圓錐的體積。這一過程潛移默化地滲透“轉化”的數(shù)學思想方法。再如:讓學生將圓柱體的鉛筆削成圓錐體的這一活動,也同樣滲透了轉化的思想方法。
3、猜想—————驗證、合作交流等學習方式體現(xiàn)了學生的主體地位。
圓錐的體積教學設計及反思篇十三
本節(jié)課所講的《圓錐的體積》是九年義務教育人教實驗版,第十二冊第二章第二節(jié)的內(nèi)容。
為了落實素質教育,積極推進新改革,充分發(fā)揮學生的主體作用,甘做學生的朋友,引導其積極主動地進行探究性學習。通過“小組活動”、“合作探究”全面調動每一位學生的學習積極性和參與性。通過學生的自主學習、互助學習,自主探究所學的內(nèi)容,完全改變過去被動的“填鴨式”的教學模式,切實提高課堂效率。
本節(jié)教材我想通過向等底等高的圓柱和圓錐中倒水或沙的實驗,得到圓錐體積的計算公式v=1/3sh.即就是等底等高的圓錐體積是圓柱體積的三分之一。例2是已知圓錐形沙堆的`底面直徑和高,求沙子的體積。這是一個簡單的實際問題,通過這個例子教學使學生初步學會解決一些與計算圓錐形物體的體積有關的實際問題。前面學生對圓錐、圓柱立體圖形的特征已進行了學習,對其特征也有了較深刻的認識,可以熟練地計算圓柱的體積、表面積、側面積。這是學習本節(jié)課的基礎。
知識技能:理解并掌握圓錐體積的計算方法,能運用公式解決
簡單的實際問題。
過程與方法:在實踐操作中掌握圓錐體積公式的推導。
情感態(tài)度:培養(yǎng)學生樂于學習,熱愛生活,勇于探索的精神。
進一步理解圓錐的體積公式,能運用公式進行計算,能解決
簡單的實際問題。
圓錐體積公式的推導。
利用多媒體、觀察法、實驗法、師生互動啟發(fā)式教學
觀察實驗—合作探究—達標反饋—歸納總結
多媒體課件、同樣的圓柱形容器若干、與圓柱等底等高的圓錐形容器若干、水和沙土。
【復習舊知】
1.課件展示圓柱和圓錐的立體圖形,并請學生說出圖形各部分的名稱。
2.圓柱的體積公式是什么?
【創(chuàng)設情境,引發(fā)猜想】
1.多媒體課件呈現(xiàn)出動畫情景故事(配音樂):
盛夏的一天,森林里悶熱極了,小動物們熱得喘不過氣來,都想吃點解暑的東西。漂亮的小白兔去冷飲店買了一塊圓柱形的冰麒麟,聰明的狐貍拿著一塊圓錐形的冰麒麟想和它交換……(多媒體課件展示兩塊冰麒麟等底等高)
2.引導學生圍繞問題展開討論。
問題一:小白兔上當了嗎?
問題二:狐貍和小白兔怎樣交換才算公平?
【自主探索,動手實驗】
1.小組實驗。按照實驗程序要求和注意事項(多媒體課件展示)
每四人為一小組,各小組長帶領三個成員動手操作實驗,教師在教室巡回指導。
2.全班交流。
組織收集信息——引導整理信息——參與處理信息
3.引導反思。實驗過程讓學生積極發(fā)散思維,各抒己見。
4.公式推導。
全班同學集體觀看多媒體課件的實驗過程,并結合自己的實驗活動試著推導圓錐的體積計算公式。
圓柱的體積等于和它等底等高的圓錐體積的3倍;或者圓錐的體積等于和它等底等高的圓柱體積1/3。
用字母表示為:v=1/3sh
5.思考:如果要計算圓錐的體積,必須知道那些條件?
6.問題解決。
故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(課件出示:等底等高)
【運用公式,解決問題】
例2:建筑工地上有許多沙子,堆起來近似一個圓錐,這堆沙子大約
有多少立方米?(結果保留兩位小數(shù))
具體解題過程讓同學們自己大顯身手,個別學生可以上講臺板演,然后教師作最后講評。
【練習鞏固】課件出示,師生共同完成。
一.判斷。
1、圓柱體的體積一定比圓錐體的體積大。()
2、圓錐的體積等于和它等底等高的圓柱體的。()3、正方體、長方體、圓錐體的體積都等于底面積×高。()。
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()
二.填表。
已知條件體積
圓錐底面半徑2厘米,高9厘米
圓錐底面直徑6厘米,高3厘米
圓錐底面周長6.28分米,高6分米
【拓展延伸】:
【質疑問難,總結升華】
通過這節(jié)課的學習,你們對圓錐的體積有哪些新的認識?請談談自己的感想和收獲。
【作業(yè)布置】
課本25頁第3、5、8題
圓錐的體積教學設計及反思篇十四
1、情感目標培養(yǎng)學生探索合作精神。
2、知識目標理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式,以及運用公式計算圓錐體積。
3、能力目標培養(yǎng)學生的空間想象力,合作交往能力、創(chuàng)新思維以及動手操作能力。
理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式。
圓錐體積計算公式的推導過程。
關鍵
公式推導過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關系。
活動一:比大小
活動目的:激發(fā)求知欲望。
課件播放:春天到了,萬物復蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應該是第一大!
師:竹林里的`爭論還在繼續(xù)著,同學們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!
師:我們光是猜,說服力并不強,那么能找到什么真正能解決問題的辦法嗎?
活動二:議一議
活動目的:通過師生、生生的互動討論、交流、探究,從而發(fā)現(xiàn)圓錐的體積和圓柱的體積有關。
1、出示課題
2、找圓錐體和學過的什么體有相似之處
3、猜一猜,圓柱的體積和圓錐的體積的關系。
圓錐的體積教學設計及反思篇十五
一、復習導入。
1、怎樣計算圓柱的體積?(板書公式)。
2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?
3、出示一個圓錐,請學生說說圓錐的特征。
4、導入:前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積應怎樣計算呢?今天這節(jié)課我們就來研究這個問題。(板書課題)。
二、動手測量,大膽猜想。
1、動手測量,找圓錐和圓柱的底和高的關系。
2、學生動手測量,教師巡視。給予指導。
3、交流得出結論:圓柱和圓錐等底等高。
4、猜想等底等高的圓柱和圓錐的體積之間有什么關系?
三、實驗操作,推導出圓錐體積計算公式。
1、實驗操作。
師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。
2、學生分組實驗,教師巡視。
3、匯報交流,你們組是怎么做實驗的?通過實驗你發(fā)現(xiàn)了什么?
4、強調等底等高。
5小結:不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結論)。
6、練習(出示)。
(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是立方分米。
(2)一個圓錐的體積是1.8立方分米,與它等底等高的.圓柱的體積是()立方分米。
三、鞏固練習。
底面積是6.28平方分米,高是9分米。
底面半徑是6厘米,高是4.5厘米。
底面直徑是4厘米,高是4.8厘米。
底面周長是12.56厘米,高是6厘米。
2、填空。
b圓柱體積的與和它()的圓錐的體積相等。
c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。
d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。
3、判斷。(用手勢表示)。
a圓柱體的體積一定比圓錐體的體積大()。
b圓錐的體積等于和它等底等高的圓柱體的()。
c正方體、長方體、圓錐體的體積都等于底面積×高。()。
d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()。
四、全課小結。
師:今天這結課學習了什么?通過今天的學習研究你有什么收獲?
五、解決實際問題。
在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數(shù)保留整噸數(shù))。
圓錐的體積教學設計及反思篇十六
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。
【教學重點】圓錐體積公式的理解,并能運用公式求圓錐的體積。
【教學難點】圓錐體積公式的推導
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現(xiàn)出極大的熱情。
【教法學法】試驗探究法 小組合作學習法
【教具學具準備】多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
【教學課時】 1課時
1、你能計算哪些規(guī)則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
【設計意圖】以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數(shù)學專用名詞:等底 等高
【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
教學預設:(1)圓椎的體積是圓柱體積的3倍;(2)圓錐的體積是圓柱體積的三分之一;(3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
2、口答題:【題目內(nèi)容見多媒體展示】獨立思考---抽生匯報---學生評議
【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。
這節(jié)課你學到了什么呢?
1、做在書上作業(yè):練習四 第4、7題
2、坐在作業(yè)本上作業(yè):練習四 第3題
圓錐的體積教學設計及反思篇十七
2、求下列各圓柱的體積。(口答)
(1)底面積是5平方厘米,高是6厘米。
(2)底面半徑4分米,高是10分米。
(3)底面直徑2米,高是3米。
師:剛才我們復習了圓柱的體積公式并應用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關系呢?這節(jié)課我們就來研究圓錐的體積。
師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學們自己做的圓錐講一講。
生:圓錐的底面是圓形的。
生:從圓錐的頂點到底面圓心的距離是圓錐的高。
師:你能上來指出這個圓錐的高嗎?
師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。
師:你們看到過哪些物體是圓錐形狀的?(略)
師:對。在生活中有很多圓錐形的物體。
師:剛才我們已經(jīng)認識了圓錐。現(xiàn)在我們再來研究圓錐的體積。請同學們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M?,F(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。
出示小黑板:
1、圓錐的體積和同它等底等高的圓柱的體積有什么關系?
2、圓錐的體積怎么算?體積公式是怎樣的?
學生分組做實驗,老師巡回指導。
生:圓柱的體積是圓錐體積的3倍。
生:圓錐的體積是同它等底等高的圓柱體權的1/3。
板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。
師:得出這個結論的同學請舉手。(略)你們是怎么得出這個結論的呢?
生:我們先在圓錐內(nèi)裝滿沙,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。
師:說得很好。那么圓錐的體積怎么算呢?
生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。
師:誰能說說圓錐的體積公式。
生:圓錐的體積公式是v=1/3sh。
師:老師也做了一個同樣實驗請同學認真看一看。想一想有什么話對老師說嗎?請看電視。
師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。
生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。
生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。
師:大家說得很對,那么為什么這幾個字特別重要?如果底和高不相等的圓錐和圓柱有沒有三分之一這個關系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學們用剛才做實驗的方法試試看。
師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的.三分之一的關鍵條件是等地等高。
師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關系來解決下列問題。
(兩名學生板演,老師巡視)
師:這位同學做的對不對?
生:對!
師:和他做的一-樣的同學請舉手。(絕大多數(shù)同學舉手)
師:那么這位同學做錯在哪里呢?(指那位做錯的同學做的)
生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。
師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。
(1)、一個圓錐的底面積是25平方分米,高是9分米,它體積是多少?
(2)、求圓錐的體積(看圖)
(3)、一個圓錐的底面直徑是20厘米,高是8厘米,它體積是多少?(圖)師:三題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。
2、填空。
(1) 一個圓錐的體積是8立方分米,底面積是2平方分米,高( )分米、。(2)圓錐形的容器高12厘米,容器中盛滿水,如將水全部倒入等底的圓柱形的器中,水面高是( )厘米。
3、選擇
(1) 兩個體積相等的等底的圓柱和圓錐,圓錐的高一定是圓柱高的( ) 。
(2) 把一段圓柱形的木棒削成一個最大的圓錐,削去部分的體積是圓錐體積的( )。
師:今天,我們學習了什么內(nèi)容?怎樣計算圓錐的體積?
對,這節(jié)課我們認識了圓錐,并推導出了圓錐的體積計算公式。回去以后,先回憶一下今天學過的內(nèi)容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。
課外作業(yè):有一個高9厘米,底面積是20平方厘米的圓柱內(nèi)裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內(nèi)還剩多少水?(邊做實驗邊討論)
1、使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。
2、培養(yǎng)學生初步的空間觀念、邏輯思維能力、動手操作能力。
3、向學生滲透知識間"相互轉化"的辯證唯物主義思想,在聯(lián)系實際中對學生進行學習目的方面的思想教育。
圓錐的體積計算。
圓錐的體積公式推導。
圓錐的體積是與它等底等高的圓柱體積的三分之一。
多媒體、等底等高的圓柱和圓錐空心實物各一個,水若干。
空心圓錐和圓柱實物各一個,沙土若干。
圓錐的體積教學設計及反思篇十八
1、通過實驗發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關系,從而得出體積的計算公式,能運用公式解答有關實際問題。
2、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關系,并通過猜想、探索和發(fā)現(xiàn)的過程,推導出圓錐的體積公式。
3、通過實驗,引導學生探索知識的內(nèi)在聯(lián)系,滲透轉化思想,感受數(shù)學方法的內(nèi)在魅力,激發(fā)學生參加探索的興趣。
教學重點: 通過實驗的方法,得到計算圓錐的體積。
教學難點:運用圓錐的體積公式進行正確地計算。
教學準備:等底等高的圓柱和圓錐容器模型各一個。
一、復習導入
師:同學們,請看大屏幕(課件出示圓柱削成最大圓錐)。
1、圓柱體積的計算公式是什么? (指名學生回答)
2、圓錐有什么特征?
同學們,圓柱的體積我們已經(jīng)知道怎么求,那與它等底等高的圓錐的體積同學們知道怎么求嗎?讓我們一同走進圓錐的體積與等底等高的圓柱體體積有什么關系的知識課堂吧?。ò鍟簣A錐的體積)
二、探究新知
課件出示等底等高的圓柱和圓錐
1、引導學生觀察:這個圓柱和圓錐有什么相同的地方?
學生回答:它們是等底等高的。
猜想:
(1)、你認為圓錐體積的大小與它的什么有關?
(2)、你認為圓錐的體積和什么圖形的體積關系最密切?猜一猜它們的體積有什么關系?
2、學生動手操作實驗
(1)、用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒?jié)M?
(2)、通過實驗,你發(fā)現(xiàn)了什么?
小結:通過實驗我們發(fā)現(xiàn)圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一 。
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積= 1/3×圓柱體積 )
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢? (板書:圓錐的體積= 1/3×底面積×高)
師:用字母應該怎樣表示? (v=1/3sh)
師:在這個公式里你覺得哪里最應該注意?
三、教學試一試
四、鞏固練習
1、計算圓錐的體積
2、判一判
3、算一算
4、拓展延伸
五、總結
通過這節(jié)課的學習,你有什么收獲呢?
六、板書:
圓錐的體積=圓柱的體積×1/3
圓錐的體積=底面積×高×1/3
用字母表示v=1/3sh
圓錐的體積教學設計及反思篇十九
并能運用公式正確地計算圓錐的體積,發(fā)展學生的空間觀念。
教學難點:圓錐的體積應用
學具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件
教學時間:一課時
教學過程:
一、復習
1、圓錐有什么特征?(課件出示)
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數(shù)學學習中的應用。
二、導人新課
出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。
板書課題:圓錐的體積
三、新課
1、教學圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
學生分組實驗。
匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。
多指名說
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找?guī)酌瑢W說。
板書:圓錐的體積=1/3 ×圓柱體積
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積= 1/3 ×底面積×高
師:用字母應該怎樣表示?
然后板書字母公式:v=1/3 sh
師:在這個公式里你覺得哪里最應該注意?
1/3×19×12=76((立方厘米))
答:這個零件體積是76立方厘米。
做一做:課件出示,學生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積v?
3、已知圓錐的底面直徑d和高h,如何求體積v?
4、已知圓錐的底面周長c和高h,如何求體積v?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
判斷:課件出示,學生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大( )
2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。
3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )
四、教師小結。
這節(jié)課我們學習了哪些知識?你還有什么問題嗎?
五、作業(yè)。課本練習
圓錐的體積教學設計及反思篇一
今天上了《圓錐的體積》這節(jié)課,反思整堂課的教學,自我感覺較為滿意的是以下幾點:
假設和猜想是科學的天梯,是科學探究的重要一環(huán)。任何發(fā)明創(chuàng)造我想都是離不開假設和猜想的。基于這樣的認識,結合本節(jié)課教學內(nèi)容的特點,我在教學中把生活中的故事引入數(shù)學課堂,讓學生大膽猜想它們的體積可能會有什么樣的關系?使課堂充滿生機、樂趣,激發(fā)了學生的求知欲,然后讓學生借助學具進行實驗、探究。事實證明這樣教學設計不僅僅是能夠培養(yǎng)學生的猜測意識,更重要的是充分調動了所有學生的積極性,大家探究的欲望強烈,為本節(jié)課的成功教學奠定了基礎。
數(shù)學不僅是思維科學,也是實驗科學。教學中,學生能通過觀察、猜測、實驗、驗證、推理與交流等數(shù)學活動,積極主動地發(fā)現(xiàn)了等底等高的圓柱與圓錐體積間的關系,進而推導出圓錐體積的計算公式:v=1/3sh。在整個教學過程中,我非常重視讓學生參與教學的.全過程,學生始終是活動的主體。同時引導學生用科學的態(tài)度去對待這個實驗,實事求是,認真分析自己的實驗結論,培養(yǎng)了學生科學的實驗觀。
教學中“圓柱和圓錐不等底等高,他們的體積還是三倍的關系嗎?”這一教學環(huán)節(jié)不是預先設計的。它是課堂中隨機生成的,卻飽含著教師和學生真實的、情感的、智慧的、思維和能力的投入,有互動的過程,氣氛相當活躍。在這個過程中既有資源的生成,又有過程狀態(tài)生成,讓學生在實踐中進一步明確了:只有等底等高,圓錐的體積才能是圓柱體積的三分之一。總之,這節(jié)課,每個學生都經(jīng)歷了“猜想———實驗———發(fā)現(xiàn)”的自主探究學習的過程。學生獲得的不僅是鮮活的數(shù)學知識,獲得更多的是科學探究的學習方法和研究問題的方法,孩子們不僅收獲了知識更體驗到了探究成功的喜悅。
圓錐的體積教學設計及反思篇二
使學生初步掌握圓錐體積的計算公式。
并能運用公式正確地計算圓錐的體積,發(fā)展學生的空間觀念。
等底等高的圓柱和圓錐,水和沙,多媒體課件。
一課時。
一、復習。
1、圓錐有什么特征?(課件出示)。
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數(shù)學學習中的應用。
二、導人新課。
我們已經(jīng)學過圓柱體積的計算公式,那么圓錐的體積是不是和圓柱體積有關呢?今天我們就來學習圓錐體積的計算。
三、新課。
1、教學圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
學生分組實驗。
匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。
多指名說。
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找?guī)酌瑢W說。
師:圓柱的體積等于什么?
生:等于“底面積×高”。
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
師:用字母應該怎樣表示?
然后板書字母公式:v=1/3sh。
師:在這個公式里你覺得哪里最應該注意?
1/3×19×12=76((立方厘米))。
答:這個零件體積是76立方厘米。
做一做:課件出示,學生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積v?
3、已知圓錐的底面直徑d和高h,如何求體積v?
4、已知圓錐的底面周長c和高h,如何求體積v?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2:(課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)。
判斷:課件出示,學生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大()。
2、圓錐的體積等于和它等底等高的圓柱體積的()。
3、正方體、長方體、圓錐體的體積都等于底面積×高。()。
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米()。
四、教師小結。
這節(jié)課我們學習了哪些知識?你還有什么問題嗎?
五、作業(yè)。課本練習九中7、8題。
圓錐的體積教學設計及反思篇三
圓錐的體積是在學生掌握了圓柱的特征及圓柱的體積等有關知識的基礎上進行教學的。
=1/3sh(知道底面積和高)。
=1/3πr2h(知道半徑和高)。
=1/3π(d*2)2h(知道直徑和高)。
=1/3π(c*2*π)2h(知道周長和高)。
在教學中,我提供的是兩組不同的學具,目的是讓學生通過自己的親身實踐,親自動手,親身體會圓柱與圓錐體積之間的關系,這樣利于培養(yǎng)學生自主探索,與同學之間合作學習,共同解決問題的能力。學生在此項活動中,不僅收獲了知識的來龍去脈,還體會到了與同學合作,共享成果的幸福喜悅。
由于課前把制作的u盤帶回家,未帶回來,所以導致課上無法通過多媒體課件的形式,把動手操作的完整過程給學生進行展示。
上課前的一點一絲疏漏都要力求避免,課前準備真的是對于教師來說至關重要,缺少哪一環(huán)都會在課堂上留下遺憾。
圓錐的體積教學設計及反思篇四
教學圓錐的體積是在掌握了圓錐的認識和圓柱的體積的基礎上教學的。教學目標是讓學生通過觀察實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。由于六年級的學生對圓錐的認識和圓柱的體積的知識掌握較牢固,學生感到簡單易懂,因此學起來并不感到困難。
新課一開始,我用課件出示一個圓柱體和一個圓錐體讓學生觀察并猜測圓錐的體積和什么有關,學生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學生的學習興趣,使學生明白學習目標。從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后課件演示實驗過程,讓孩子從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,這樣學生對知識的掌握就水到渠成了。對圓錐的體積建立了鮮明的印象之后,再應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
當然,教學是一門缺陷藝術,在教學之后我感到遺憾。
的是,沒讓學生動手實際操作,我想如果每個小組準備一套學具,讓他們以小組合作學習的方式使每個學生都能真切的參與到探究中去,最大限度的發(fā)揮每個學生的自主學習的能力,這樣的學習不僅使學生學會更多的知識,更重要的是能培養(yǎng)學生的能力。1、探究圓錐體積計算方法的學習過程中,學生獲得的不僅是新活的數(shù)學知識,同時也獲得了更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。
2、每個學生都經(jīng)歷“猜想估計---設計實驗驗證---發(fā)現(xiàn)算法”的自主探究學習的過程,在教師適當?shù)囊龑陆o于學生根據(jù)自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。讓每個學生都經(jīng)歷一次探究學習的過程。
通過本節(jié)課的教學,讓我真正體會到了讓學生通過動手實踐去發(fā)現(xiàn)新知識的好處,學生自己去發(fā)現(xiàn)的新知識,是一種真正的理解,不是老師硬灌輸給他的,他們能靈活用知識解決問題,這使我熟悉到新課改提倡的:“動手實踐、自主探索、合作交流是學生學習數(shù)學的重要方式?!霸诮窈蟮慕虒W中我將用新課程的理念指導我的教學,提高課堂教學效率。
圓錐的體積教學設計及反思篇五
圓錐的體積是在學習了圓錐的認識的基礎上進行教學的。
這節(jié)課我是這樣設計的:第一部分,復習圓錐的特征和圓柱的體積=底面積×高。反思:復習舊知識之間的聯(lián)系,便于運用已學知識推動新知識的學習,為學習新知識做準備。
第二部分,便于圓柱體積的計算公式,先讓學生用轉化的思想大膽猜測,能否把體積計算方法轉化成已學過的立體圖形來推導圓錐體積公式呢?學生猜測之后,讓學生拿出手中等底等高的圓柱體,然后同桌討論得出結論,全班交流。再進行第二次實驗,同桌交換圓柱或圓錐倒進沙子之后,同桌討論,全班交流,老師引導學生兩次實驗的結論有什么不同,經(jīng)過學生的討論,師生歸納出:圓錐的體積等于等底等高的圓柱體積的三分之一。并強調v=3sh的前提條件是等底等高。
反思:這一環(huán)節(jié)讓學生用轉化的思想猜測,激發(fā)學生的學習興趣,調動學生的探究欲望。緊接著讓學生兩次動手實驗,親自體驗知識的探究過程。符合小學生的認知規(guī)律,便于學生主動地獲取知識,掌握正確的學習方法。通過實驗,學生參與了知識的形成過程,得出了只有在等底等高的情況下圓錐的體積是圓柱的三分之一,否則這個結論不成立。
圓錐的體積教學設計及反思篇六
《圓錐的體積》一課的教學,是在學生掌握了圓錐的認識和圓柱的體積的基礎上進行的。多年的教學,讓我學習和累計了很多的教學經(jīng)驗。教學時我先生活故事導入激發(fā)學生的學習興趣,再讓學生大膽的猜想圓錐的體積公式,然后通過實驗操作來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。
新課一開始,我就利用教師出示一堆煤,師:將這堆煤倒在地上,會變成什么形狀情境導入,教師再演示削鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形,讓學生觀察,猜測圓錐的體積和什么有關,由于課件很形象直觀,學生很快聯(lián)系到了圓柱的體積,而且很容易想到應該是幾分之幾的關系。在猜想中學生的學習興趣高漲,更明確了學習的目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗,讓孩子親歷教學的驗證過程,從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
小學數(shù)學教學中的情感發(fā)展主要包括學生對數(shù)學、數(shù)學學習活動的興趣;自信心和意志力,學習數(shù)學的態(tài)度與學習習慣。本節(jié)課的教學,擺脫了傳統(tǒng)“灌”的教學,從引導學生發(fā)現(xiàn)問題、探索問題,學生在發(fā)現(xiàn)中激起興趣,從探索中尋找快樂,然后又應用知識解決問題。學生經(jīng)歷了一個探索性的學習過程,不知不覺地掌握了知識,發(fā)展了能力,增進了對數(shù)學的情感。學習變成了一個賞心悅目的活動。
小學數(shù)學教材中,含有大量思想教育因素,是對學生進行教育的良好素材。教師在教學數(shù)學知識的同時,要注意發(fā)揮教材本身思想教育功能,不失時機地、潛移默化地滲透思想教育活動是兒童認識數(shù)學的重要方式。新課改提倡學生的自主活動,把數(shù)學學習的主動權交給學生,鼓勵每個學生積極參與教學活動,在教學中創(chuàng)設豐富多彩的活動情境,讓學生親自實踐,大膽探索。
練習設計從基本題入手,過渡到情境題,發(fā)展到綜合解決實際問題,這個過程中訓練了學生的解題能力,培養(yǎng)了運用所學知識解決實際問題的能力。
在教學后感覺到遺憾的是,由于教具準備不足的.關系,學生參與以小組合作學習的面小,小組合作分工不太合理,使每個學生不是全身心投入到探究實驗中去。這樣少部份學生的學習參與積極性不高,有點被動、遺憾進行學習,沒有最大限度的發(fā)揮每個學生的自主學習的能力。這樣的學習雖然是培養(yǎng)了學生的能力,但合作意識還需加強,學生小組合作完成試驗的默契還需加強。
圓錐的體積教學設計及反思篇七
本節(jié)課在學習圓柱的體積的基礎上,再學習圓錐的體積,學生感到非常簡單易懂,因此學起來并不感到困難。但教學過后,仍感到有許多不盡人意之處,當然也有許多收獲。
2、是在實驗時,讓學生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學習,學生學的活,記得牢,即發(fā)揮教師的主導作用,又體現(xiàn)了學生的主體地位。學生在學習的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學習體驗。
3、探究圓錐體積計算方法的學習過程,學生可以不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數(shù)學知識,同時也獲得了更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。
4、每個學生都經(jīng)歷“猜想---設計實驗驗證---發(fā)現(xiàn)算法”的自主探究學習的過程,在教師適當?shù)囊龑陆o于學生根據(jù)自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。讓每個學生都經(jīng)歷一次探究學習的過程。
1、許多學生在計算過程中常忘記除以3,需要加強練習。
2、許多學生在計算中出現(xiàn)錯誤,計算能力不過關,口算也不過關,導致計算失敗。
3、在學生進行倒沙實驗時,應該事先讓學生準備好充分的學具,比如,準備一個圓柱,然后做一個和圓柱等底等高的圓錐,在做一個等底不等高的圓錐或者等高不等底的,這樣學生就比較明顯的看出與圓柱等底等高的圓錐的體積是圓柱體積的三分之一。
4、一節(jié)好課在教學時要層次清楚,步步深入,重點突出。應注意激發(fā)學生的求知欲。要有全體學生的積極參與,突出學生的主體作用。我在這幾個方面都還要加強。
圓錐的體積教學設計及反思篇八
《圓錐的體積》是九年義務教育六年制小學數(shù)學第十一冊第三單元的內(nèi)容。
1、通過讓學生小組合作探究,利用不同的方法測量出圓錐的體積。體驗到計算圓錐體積的計算公式v=1/3sh是最簡便的方法。
2、鍛煉學生的操作能力,估算能力,評價能力,更好的發(fā)展他們的創(chuàng)新能力。
3、培養(yǎng)學生的合作意識及主動探索知識的精神。
讓學生自己親身體驗到計算圓錐體積的不同方法。從而理解計算公式v=1/3sh,并感受到計算公式的簡便。
教學難點:能利用不同方法計算不同物體的體積。知識的活學活用。
1、個學生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。
2、教學軟件。
一、創(chuàng)設情景,激趣引新。
1、首先教師手中拿一圓柱體問:“同學們,老師想知道這個圓柱體的體積你們能幫助我嗎?”
(學生踴躍舉手說明??梢韵葴y量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)
2、教師表示贊同,并抓住這一契機拿出于剛才圓柱等底等高的圓錐,問:“那老師這里還有一個圓錐體,它的體積應該怎樣計算呢?你們知道嗎?”(學生齊答不)那你們想不想研究呢?(學生齊答想)好,下面我們就一起來研究圓錐的體積該怎樣計算。
二、小組合作,探究學習。
1、動手操作,測量圓錐體的體積。
要求:每組同學,利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測量出自己組內(nèi)的圓錐體的體積。測量物體是容器的厚度不計。
3、分組匯報不同的方法。
〈學生在匯報時可邊講解邊示范〉
方法一:可以利用量杯。首先把圓錐體容器內(nèi)裝滿水,然后把它倒入量杯內(nèi),我們看到水面的刻度就是水的體積也就是圓錐體的體積。
方法二:利用手中的一立方厘米的小木塊進行估算。
方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時看容器空出來的地方為長方體,用一立方分米減去長方體的體積就可以得到圓錐體的體積了。
〈設計意圖:通過討論研究和動手操作,發(fā)展學生的創(chuàng)新能力,和解決實際問題的能力?!?BR> (2)學生再次在小組內(nèi)操作探究。
(3)匯報結論。
(4)微機演示。
當?shù)鹊撞坏雀邥r,當?shù)雀卟坏鹊讜r,當?shù)缀透叨疾幌嗟葧r,出現(xiàn)的結果是怎樣的。
4、評價以上各種辦法
同學們的結論是用公式計算比較方便。
三、解決實際問題
(問題一)
1、各小組量一量,算一算自己組內(nèi)的圓錐體的體積。(測量,計算時都要保留整數(shù))
2、匯報結果。
先測量出圓錐體的直徑,算出底面積。再測量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶劑可看作體積)
(問題二)
2、匯報結果。
用每立方厘米裝大米的克數(shù)乘圓錐的體積。算式:0.9x262≈236克
3、驗證計算結果
用稱稱一稱,比較一下結果。
4、討論兩次結果為什么不同。
由于測量時厚度不計,計算時是近似值。都存在誤差。
〈設計意圖:通過測量,計算等環(huán)節(jié),發(fā)展學生的應用意識及估算的能力?!?BR> (問題三)
利用圓錐體積公式計算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(問題四)
計算不規(guī)則物體體積或容積。(直說出計算的方法即可)
1、用什么方法計算出葫蘆能裝多少水?
2、胡蘿卜的體積怎樣計算?
3、不規(guī)則的零件體積計算?
四、總結全課
說說你的收獲,鼓勵學生學習知識要活學活用,大膽動腦,勇于創(chuàng)新。
圓錐的體積教學設計及反思篇九
1、通過分小組倒沙的實驗,使學生自主探索圓錐體積和圓柱體積之間的關系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關圓錐體積計算的簡單問題。
2、借助已有的生活和學習經(jīng)驗,在小組活動過程中,培養(yǎng)學生的動手操作能力和自主探索能力。
3、通過小組活動,實驗操作,巧妙設置探索障礙,激發(fā)學生的自主探索意識,發(fā)展學生的空間觀念。
掌握圓錐體積的計算公式。
1、理解圓錐體積公式的'推導過程;
2、掌握圓錐體積計算方法并能運用解決簡單的實際問題。
1、學生預習教材;
2、教師準備等底等高的圓柱和圓錐形容器若干個,沙土,直尺,平板。
一、復習
1、圓柱的體積公式是什么?(學生交流后做幻燈片中的練習題)
2、說一說圓錐有哪些特征。
a、出示實物圖,學生說一說生活中的圓錐形物體
b、總結圓錐的特征,學生齊讀。
二、導入新課
1、幻燈出示一圓錐形沙堆
2、師:操場上,同學們要計算這堆沙子的體積,怎么計算呢?
引出課題:這就是這節(jié)課我們要探索的問題
3、板書課題
三、探索新知
1、學習圓錐體積的推導公式
(1)思考:圓柱的體積公式是怎樣推導出來的?(學生交流討論,教師及時鼓勵學生回答)
(2)師:我們能不能也通過已學過圖形來求圓錐的體積呢?
學生小組討論交流
(3)師:有的同學提出了做實驗的方法,那么需要哪些器材呢?
學生交流后,幻燈出示實驗器材
(4)師:用這些器材怎樣做實驗呢?
學生小組討論后,教師:下面,我們就來試一試這種方法
(5)學生做實驗
a、觀察自己手中的圓柱與圓錐,討論他們的共同點。(等底等高)
師:下面的時間,請同學們按照實驗報告單的步驟做實驗,并將結果填入實驗報告單中。(教師巡視指導)
b、集體交流實驗結論,大屏幕演示結果
c、想一想:通過實驗你發(fā)現(xiàn)了什么?
要求一個圓錐的體積,必須具備哪兩個條件?
明確:求圓錐的體積,圓錐的底面積和高是必備的直接條件。
(6)練習
2、拓展內(nèi)容
(2)學生分小組討論,填寫表格。(教師巡視指導)
(3)集體交流,大屏幕展示結果
(4)練習:
3、鞏固練習
三、拓展知識
1、出示幾組不同的情況,指定每組完成一項
2、展示結果
3、練習
四、小結
師:同學們,今天這節(jié)課你都學會了什么?
學生交流回答,教師板書
五、作業(yè)設計
六、板書設計
圓錐的體積
等底等高的圓錐和圓柱,
圓錐的體積是圓柱體積的
圓錐的體積教學設計及反思篇十
一、復習導入。
1、怎樣計算圓柱的體積?(板書公式)
2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?
3、出示一個圓錐,請學生說說圓錐的特征。
4、導入:前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積應怎樣計算呢?今天這節(jié)課我們就來研究這個問題。(板書課題)
二、動手測量,大膽猜想。
1、動手測量,找圓錐和圓柱的底和高的關系。
2、學生動手測量,教師巡視。給予指導。
3、交流得出結論:圓柱和圓錐等底等高。
4、猜想等底等高的圓柱和圓錐的體積之間有什么關系?
三、實驗操作,推導出圓錐體積計算公式。
1、實驗操作。
師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。
2、學生分組實驗,教師巡視。
3、匯報交流,你們組是怎么做實驗的?通過實驗你發(fā)現(xiàn)了什么?
4、強調等底等高。
5小結:不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結論)
6、練習(出示)
(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是()立方分米。
(2)一個圓錐的體積是1.8立方分米,與它等底等高的圓柱的體積是()立方分米。
7、得出圓錐的體積計算公式。
8、用字母表示圓錐的體積計算公式。
三、鞏固練習。
1、計算下面圓錐的體積。(只列式不計算)
底面積是6.28平方分米,高是9分米。
底面半徑是6厘米,高是4.5厘米。
底面直徑是4厘米,高是4.8厘米。
底面周長是12.56厘米,高是6厘米。
2、填空。
a圓錐的體積=(),用字母表示是()。
b圓柱體積的與和它()的圓錐的體積相等。
c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。
d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。
3、判斷。(用手勢表示)
a圓柱體的體積一定比圓錐體的體積大()
b圓錐的體積等于和它等底等高的圓柱體的()
c正方體、長方體、圓錐體的體積都等于底面積×高。()
d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()
四、全課小結。
師:今天這結課學習了什么?通過今天的學習研究你有什么收獲?
五、解決實際問題。
在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數(shù)保留整噸數(shù))
圓錐的體積教學設計及反思篇十一
本節(jié)課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發(fā)展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。
本節(jié)內(nèi)容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經(jīng)歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養(yǎng)學生抽象的邏輯思維能力,激發(fā)學生的想象力.
數(shù)學課程標準中指出:應放手讓學生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發(fā)展空間觀念,從而提高學生自主解決問題的能力。
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。
圓錐體積公式的理解,并能運用公式求圓錐的體積。
圓錐體積公式的推導
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對 于新的知識教學,他們一定能表現(xiàn)出極大的熱情。
試驗探究法 小組合作學習法
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
1課時
一、回顧舊知識
1、你能計算哪些規(guī)則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
設計意圖通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
二、創(chuàng)設情景 激發(fā)激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
設計意圖以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究 合作學習(探討圓柱與圓錐體積之間的關系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數(shù)學專用名詞:等底 等高
設計意圖通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
四、實踐運用 提升技能
2、口答題:題目內(nèi)容見多媒體展示獨立思考---抽生匯報---學生評議
設計意圖通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。
五、談談收獲:這節(jié)課你學到了什么呢?
六、課堂作業(yè):
1、做在書上作業(yè):練習四 第4、7題
2、坐在作業(yè)本上作業(yè):練習四 第3題
圓錐的體積教學設計及反思篇十二
人教版九年義務教育小學數(shù)學教科書第十二冊。
這部分知識是學生在有了圓錐的認識和圓柱體積相關知識的基礎上進行教學的。在知識與技能上,通過對圓錐體的研究,經(jīng)歷并理解圓錐體積公式的推導過程,會計算圓錐的體積;在方法的選擇上,抓住新舊知識間的聯(lián)系,通過猜想、課件演示、實踐操作,從經(jīng)歷和體驗中驗證,讓學生在自主探索與合作交流過程中真正理解和掌握基本的數(shù)學知識與技能,數(shù)學思想和方法,使學生真正成為學習的主人。
1、使學生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關簡單的實際問題。
2、讓學生經(jīng)歷猜想——驗證,合作——探究的教學過程,理解圓錐體積公式的推導過程,體驗轉化的思想。
3、培養(yǎng)學生動手操作、觀察、分析、推理能力,發(fā)展空間觀念,滲透事物是普遍聯(lián)系的唯物辯證思想。
[點評:知識與技能目標的設計全面、具體、有針對性。不但使學生掌握圓錐體積的計算公式,而且培養(yǎng)了學生運用圓錐體積公式解決生活中的實際問題的能力,使學生體會到數(shù)學與生活的密切聯(lián)系注。并注重對學生“猜想——————驗證”、“合作——————探究”等學習方式的培養(yǎng)及“轉化”數(shù)學思想方法的滲透;同時關注學生空間觀念的培養(yǎng)及唯物辯證思想的滲透。
掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。
理解圓錐體積公式的推導過程及解決生活中的實際問題。
一、 創(chuàng)設情境導入新課。
2、引導學生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學可以同桌交流,共同研究。(組織學生先獨立思考,然后同桌討論交流,最后匯報自己的想法。)
3、教師出示一個圓錐體的木塊引導學生明確前面所想的方法太麻繁、不實用。并鼓勵學生研究出一種簡便快捷的方法來求圓錐的體積。
二、經(jīng)歷體驗,探究新知
(一)滲透轉化,幫助猜想
1、先組織學生自由暢談圓錐的體積可能會與誰有關(圓柱)。先給學生獨立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導學生回憶圓柱體積公式的推導過程。
2、組織學生拿出準備好的圓柱體鉛筆和轉筆刀來削鉛筆,同時教師也隨著學生一起來做。教師做好后要及時巡視,直到學生將鉛筆削得尖尖的為止。然后引導學生認真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關系。(削好后的圓柱與圓錐等底不等高,體積無關。)此時,教師要參與到小組討論中,及時引導學生發(fā)現(xiàn)削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關。組織學生自己的話來總結。最后,將自己的發(fā)現(xiàn)進行匯報。
(二)小組合作,實驗驗證。
1、教師發(fā)給每組學生一個準備好的等底等高的圓柱和圓錐、沙了,組織學生拿出等底等高的圓柱和圓錐進行實驗。實驗前小組成員進行組內(nèi)分工,有的進行操作,有的記錄……實驗中教師要及時巡視指導并參與到小組實驗中去及時了解學生實驗的進展情況。并指導幫助學生順利完成實驗。
2、實驗后組內(nèi)成員進行交流。交流的過程中,要引導學生注重傾聽別人的想法,并說出自己不同的見解。
3、首先各小組派代表進行匯報,其它小組可以補充。然后全班進行交流實驗結果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導出圓錐的體積公式。預設板書如下:
概括板書:
等底到高
v圓柱=sh v圓錐= 1/3sh
4、深化公式。組織學生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預設板書如下:
v =1/3πr2h v =1/3(c/2π)2h v =1/3(d/2)2h
5、教師組織學生獨立完成書中例題后集體訂正。
(三)看書質疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。
三、鞏固新知,拓展應用。
1、判斷并說明理由
(1)圓柱體積是圓錐體積的3倍( )
(2)一個圓錐的高不變,底面積越大,體積越大。( )
(3)一個圓錐體的高是3分米,底面積10平方分米,它的體積是30立方分米。( )
組織學生打手勢判斷后說明理由,并強調圓錐的體積是圓柱體積的1/3是以等底等高為前提的。
2、求下列圓錐的體積(口答,只列式,不計算)
s=4平方米,h=2平方米
r=2分米,h=3分米
d=6厘米,h=5厘米
組織學生根據(jù)圓錐體積公式解答。
3、實踐與應用:
學校操場有一堆圓錐沙子,求它的體積需要什么條件,你有什么好辦法?
組織學生進行討論,求圓錐體的沙堆的體積需要什么條件后并談如何來測量這些所需條件,有條件的可領學生實地操作一下。再求體積。
四、課后總結,感情升華。
這節(jié)課你有什么收獲?你是怎樣獲得的?
[總評:
1、鉆研教材,創(chuàng)造性地使用教材。
教師在充分了解學生、把握課程標準、教學目標、教材編寫意圖的基礎上,根據(jù)學生生活實際和學習實際,有目的地對教材內(nèi)容進行改編和加工。如學生削鉛筆這一活動的設計,學生從“削”的過程中體驗到圓柱與圓錐的聯(lián)系;再如動手實驗這一環(huán)節(jié)的設計,使學生在觀察、比較、動手操作,合作交流中理解掌握新知。創(chuàng)造性地融入一些生活素材,加強了數(shù)學與生活的密切聯(lián)系。
2、注重數(shù)學思想方法的滲透。
數(shù)學思想方法是數(shù)學知識的精髓,又是知識轉化為能力的橋梁。新課伊始,便讓學生自己想辦法求圓錐的體積,此時學生便想辦法將圓錐體的容器裝滿水后倒入圓柱或長(正)方體的容器中,從而求出圓錐的體積。這一過程潛移默化地滲透“轉化”的數(shù)學思想方法。再如:讓學生將圓柱體的鉛筆削成圓錐體的這一活動,也同樣滲透了轉化的思想方法。
3、猜想—————驗證、合作交流等學習方式體現(xiàn)了學生的主體地位。
圓錐的體積教學設計及反思篇十三
本節(jié)課所講的《圓錐的體積》是九年義務教育人教實驗版,第十二冊第二章第二節(jié)的內(nèi)容。
為了落實素質教育,積極推進新改革,充分發(fā)揮學生的主體作用,甘做學生的朋友,引導其積極主動地進行探究性學習。通過“小組活動”、“合作探究”全面調動每一位學生的學習積極性和參與性。通過學生的自主學習、互助學習,自主探究所學的內(nèi)容,完全改變過去被動的“填鴨式”的教學模式,切實提高課堂效率。
本節(jié)教材我想通過向等底等高的圓柱和圓錐中倒水或沙的實驗,得到圓錐體積的計算公式v=1/3sh.即就是等底等高的圓錐體積是圓柱體積的三分之一。例2是已知圓錐形沙堆的`底面直徑和高,求沙子的體積。這是一個簡單的實際問題,通過這個例子教學使學生初步學會解決一些與計算圓錐形物體的體積有關的實際問題。前面學生對圓錐、圓柱立體圖形的特征已進行了學習,對其特征也有了較深刻的認識,可以熟練地計算圓柱的體積、表面積、側面積。這是學習本節(jié)課的基礎。
知識技能:理解并掌握圓錐體積的計算方法,能運用公式解決
簡單的實際問題。
過程與方法:在實踐操作中掌握圓錐體積公式的推導。
情感態(tài)度:培養(yǎng)學生樂于學習,熱愛生活,勇于探索的精神。
進一步理解圓錐的體積公式,能運用公式進行計算,能解決
簡單的實際問題。
圓錐體積公式的推導。
利用多媒體、觀察法、實驗法、師生互動啟發(fā)式教學
觀察實驗—合作探究—達標反饋—歸納總結
多媒體課件、同樣的圓柱形容器若干、與圓柱等底等高的圓錐形容器若干、水和沙土。
【復習舊知】
1.課件展示圓柱和圓錐的立體圖形,并請學生說出圖形各部分的名稱。
2.圓柱的體積公式是什么?
【創(chuàng)設情境,引發(fā)猜想】
1.多媒體課件呈現(xiàn)出動畫情景故事(配音樂):
盛夏的一天,森林里悶熱極了,小動物們熱得喘不過氣來,都想吃點解暑的東西。漂亮的小白兔去冷飲店買了一塊圓柱形的冰麒麟,聰明的狐貍拿著一塊圓錐形的冰麒麟想和它交換……(多媒體課件展示兩塊冰麒麟等底等高)
2.引導學生圍繞問題展開討論。
問題一:小白兔上當了嗎?
問題二:狐貍和小白兔怎樣交換才算公平?
【自主探索,動手實驗】
1.小組實驗。按照實驗程序要求和注意事項(多媒體課件展示)
每四人為一小組,各小組長帶領三個成員動手操作實驗,教師在教室巡回指導。
2.全班交流。
組織收集信息——引導整理信息——參與處理信息
3.引導反思。實驗過程讓學生積極發(fā)散思維,各抒己見。
4.公式推導。
全班同學集體觀看多媒體課件的實驗過程,并結合自己的實驗活動試著推導圓錐的體積計算公式。
圓柱的體積等于和它等底等高的圓錐體積的3倍;或者圓錐的體積等于和它等底等高的圓柱體積1/3。
用字母表示為:v=1/3sh
5.思考:如果要計算圓錐的體積,必須知道那些條件?
6.問題解決。
故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(課件出示:等底等高)
【運用公式,解決問題】
例2:建筑工地上有許多沙子,堆起來近似一個圓錐,這堆沙子大約
有多少立方米?(結果保留兩位小數(shù))
具體解題過程讓同學們自己大顯身手,個別學生可以上講臺板演,然后教師作最后講評。
【練習鞏固】課件出示,師生共同完成。
一.判斷。
1、圓柱體的體積一定比圓錐體的體積大。()
2、圓錐的體積等于和它等底等高的圓柱體的。()3、正方體、長方體、圓錐體的體積都等于底面積×高。()。
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()
二.填表。
已知條件體積
圓錐底面半徑2厘米,高9厘米
圓錐底面直徑6厘米,高3厘米
圓錐底面周長6.28分米,高6分米
【拓展延伸】:
【質疑問難,總結升華】
通過這節(jié)課的學習,你們對圓錐的體積有哪些新的認識?請談談自己的感想和收獲。
【作業(yè)布置】
課本25頁第3、5、8題
圓錐的體積教學設計及反思篇十四
1、情感目標培養(yǎng)學生探索合作精神。
2、知識目標理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式,以及運用公式計算圓錐體積。
3、能力目標培養(yǎng)學生的空間想象力,合作交往能力、創(chuàng)新思維以及動手操作能力。
理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式。
圓錐體積計算公式的推導過程。
關鍵
公式推導過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關系。
活動一:比大小
活動目的:激發(fā)求知欲望。
課件播放:春天到了,萬物復蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應該是第一大!
師:竹林里的`爭論還在繼續(xù)著,同學們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!
師:我們光是猜,說服力并不強,那么能找到什么真正能解決問題的辦法嗎?
活動二:議一議
活動目的:通過師生、生生的互動討論、交流、探究,從而發(fā)現(xiàn)圓錐的體積和圓柱的體積有關。
1、出示課題
2、找圓錐體和學過的什么體有相似之處
3、猜一猜,圓柱的體積和圓錐的體積的關系。
圓錐的體積教學設計及反思篇十五
一、復習導入。
1、怎樣計算圓柱的體積?(板書公式)。
2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?
3、出示一個圓錐,請學生說說圓錐的特征。
4、導入:前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積應怎樣計算呢?今天這節(jié)課我們就來研究這個問題。(板書課題)。
二、動手測量,大膽猜想。
1、動手測量,找圓錐和圓柱的底和高的關系。
2、學生動手測量,教師巡視。給予指導。
3、交流得出結論:圓柱和圓錐等底等高。
4、猜想等底等高的圓柱和圓錐的體積之間有什么關系?
三、實驗操作,推導出圓錐體積計算公式。
1、實驗操作。
師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。
2、學生分組實驗,教師巡視。
3、匯報交流,你們組是怎么做實驗的?通過實驗你發(fā)現(xiàn)了什么?
4、強調等底等高。
5小結:不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結論)。
6、練習(出示)。
(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是立方分米。
(2)一個圓錐的體積是1.8立方分米,與它等底等高的.圓柱的體積是()立方分米。
三、鞏固練習。
底面積是6.28平方分米,高是9分米。
底面半徑是6厘米,高是4.5厘米。
底面直徑是4厘米,高是4.8厘米。
底面周長是12.56厘米,高是6厘米。
2、填空。
b圓柱體積的與和它()的圓錐的體積相等。
c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。
d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。
3、判斷。(用手勢表示)。
a圓柱體的體積一定比圓錐體的體積大()。
b圓錐的體積等于和它等底等高的圓柱體的()。
c正方體、長方體、圓錐體的體積都等于底面積×高。()。
d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()。
四、全課小結。
師:今天這結課學習了什么?通過今天的學習研究你有什么收獲?
五、解決實際問題。
在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數(shù)保留整噸數(shù))。
圓錐的體積教學設計及反思篇十六
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。
【教學重點】圓錐體積公式的理解,并能運用公式求圓錐的體積。
【教學難點】圓錐體積公式的推導
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現(xiàn)出極大的熱情。
【教法學法】試驗探究法 小組合作學習法
【教具學具準備】多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
【教學課時】 1課時
1、你能計算哪些規(guī)則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
【設計意圖】以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數(shù)學專用名詞:等底 等高
【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
教學預設:(1)圓椎的體積是圓柱體積的3倍;(2)圓錐的體積是圓柱體積的三分之一;(3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
2、口答題:【題目內(nèi)容見多媒體展示】獨立思考---抽生匯報---學生評議
【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。
這節(jié)課你學到了什么呢?
1、做在書上作業(yè):練習四 第4、7題
2、坐在作業(yè)本上作業(yè):練習四 第3題
圓錐的體積教學設計及反思篇十七
2、求下列各圓柱的體積。(口答)
(1)底面積是5平方厘米,高是6厘米。
(2)底面半徑4分米,高是10分米。
(3)底面直徑2米,高是3米。
師:剛才我們復習了圓柱的體積公式并應用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關系呢?這節(jié)課我們就來研究圓錐的體積。
師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學們自己做的圓錐講一講。
生:圓錐的底面是圓形的。
生:從圓錐的頂點到底面圓心的距離是圓錐的高。
師:你能上來指出這個圓錐的高嗎?
師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。
師:你們看到過哪些物體是圓錐形狀的?(略)
師:對。在生活中有很多圓錐形的物體。
師:剛才我們已經(jīng)認識了圓錐。現(xiàn)在我們再來研究圓錐的體積。請同學們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M?,F(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。
出示小黑板:
1、圓錐的體積和同它等底等高的圓柱的體積有什么關系?
2、圓錐的體積怎么算?體積公式是怎樣的?
學生分組做實驗,老師巡回指導。
生:圓柱的體積是圓錐體積的3倍。
生:圓錐的體積是同它等底等高的圓柱體權的1/3。
板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。
師:得出這個結論的同學請舉手。(略)你們是怎么得出這個結論的呢?
生:我們先在圓錐內(nèi)裝滿沙,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。
師:說得很好。那么圓錐的體積怎么算呢?
生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。
師:誰能說說圓錐的體積公式。
生:圓錐的體積公式是v=1/3sh。
師:老師也做了一個同樣實驗請同學認真看一看。想一想有什么話對老師說嗎?請看電視。
師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。
生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。
生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。
師:大家說得很對,那么為什么這幾個字特別重要?如果底和高不相等的圓錐和圓柱有沒有三分之一這個關系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學們用剛才做實驗的方法試試看。
師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的.三分之一的關鍵條件是等地等高。
師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關系來解決下列問題。
(兩名學生板演,老師巡視)
師:這位同學做的對不對?
生:對!
師:和他做的一-樣的同學請舉手。(絕大多數(shù)同學舉手)
師:那么這位同學做錯在哪里呢?(指那位做錯的同學做的)
生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。
師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。
(1)、一個圓錐的底面積是25平方分米,高是9分米,它體積是多少?
(2)、求圓錐的體積(看圖)
(3)、一個圓錐的底面直徑是20厘米,高是8厘米,它體積是多少?(圖)師:三題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。
2、填空。
(1) 一個圓錐的體積是8立方分米,底面積是2平方分米,高( )分米、。(2)圓錐形的容器高12厘米,容器中盛滿水,如將水全部倒入等底的圓柱形的器中,水面高是( )厘米。
3、選擇
(1) 兩個體積相等的等底的圓柱和圓錐,圓錐的高一定是圓柱高的( ) 。
(2) 把一段圓柱形的木棒削成一個最大的圓錐,削去部分的體積是圓錐體積的( )。
師:今天,我們學習了什么內(nèi)容?怎樣計算圓錐的體積?
對,這節(jié)課我們認識了圓錐,并推導出了圓錐的體積計算公式。回去以后,先回憶一下今天學過的內(nèi)容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。
課外作業(yè):有一個高9厘米,底面積是20平方厘米的圓柱內(nèi)裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內(nèi)還剩多少水?(邊做實驗邊討論)
1、使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。
2、培養(yǎng)學生初步的空間觀念、邏輯思維能力、動手操作能力。
3、向學生滲透知識間"相互轉化"的辯證唯物主義思想,在聯(lián)系實際中對學生進行學習目的方面的思想教育。
圓錐的體積計算。
圓錐的體積公式推導。
圓錐的體積是與它等底等高的圓柱體積的三分之一。
多媒體、等底等高的圓柱和圓錐空心實物各一個,水若干。
空心圓錐和圓柱實物各一個,沙土若干。
圓錐的體積教學設計及反思篇十八
1、通過實驗發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關系,從而得出體積的計算公式,能運用公式解答有關實際問題。
2、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關系,并通過猜想、探索和發(fā)現(xiàn)的過程,推導出圓錐的體積公式。
3、通過實驗,引導學生探索知識的內(nèi)在聯(lián)系,滲透轉化思想,感受數(shù)學方法的內(nèi)在魅力,激發(fā)學生參加探索的興趣。
教學重點: 通過實驗的方法,得到計算圓錐的體積。
教學難點:運用圓錐的體積公式進行正確地計算。
教學準備:等底等高的圓柱和圓錐容器模型各一個。
一、復習導入
師:同學們,請看大屏幕(課件出示圓柱削成最大圓錐)。
1、圓柱體積的計算公式是什么? (指名學生回答)
2、圓錐有什么特征?
同學們,圓柱的體積我們已經(jīng)知道怎么求,那與它等底等高的圓錐的體積同學們知道怎么求嗎?讓我們一同走進圓錐的體積與等底等高的圓柱體體積有什么關系的知識課堂吧?。ò鍟簣A錐的體積)
二、探究新知
課件出示等底等高的圓柱和圓錐
1、引導學生觀察:這個圓柱和圓錐有什么相同的地方?
學生回答:它們是等底等高的。
猜想:
(1)、你認為圓錐體積的大小與它的什么有關?
(2)、你認為圓錐的體積和什么圖形的體積關系最密切?猜一猜它們的體積有什么關系?
2、學生動手操作實驗
(1)、用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒?jié)M?
(2)、通過實驗,你發(fā)現(xiàn)了什么?
小結:通過實驗我們發(fā)現(xiàn)圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一 。
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積= 1/3×圓柱體積 )
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢? (板書:圓錐的體積= 1/3×底面積×高)
師:用字母應該怎樣表示? (v=1/3sh)
師:在這個公式里你覺得哪里最應該注意?
三、教學試一試
四、鞏固練習
1、計算圓錐的體積
2、判一判
3、算一算
4、拓展延伸
五、總結
通過這節(jié)課的學習,你有什么收獲呢?
六、板書:
圓錐的體積=圓柱的體積×1/3
圓錐的體積=底面積×高×1/3
用字母表示v=1/3sh
圓錐的體積教學設計及反思篇十九
并能運用公式正確地計算圓錐的體積,發(fā)展學生的空間觀念。
教學難點:圓錐的體積應用
學具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件
教學時間:一課時
教學過程:
一、復習
1、圓錐有什么特征?(課件出示)
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數(shù)學學習中的應用。
二、導人新課
出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。
板書課題:圓錐的體積
三、新課
1、教學圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
學生分組實驗。
匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。
多指名說
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找?guī)酌瑢W說。
板書:圓錐的體積=1/3 ×圓柱體積
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積= 1/3 ×底面積×高
師:用字母應該怎樣表示?
然后板書字母公式:v=1/3 sh
師:在這個公式里你覺得哪里最應該注意?
1/3×19×12=76((立方厘米))
答:這個零件體積是76立方厘米。
做一做:課件出示,學生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積v?
3、已知圓錐的底面直徑d和高h,如何求體積v?
4、已知圓錐的底面周長c和高h,如何求體積v?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
判斷:課件出示,學生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大( )
2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。
3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )
四、教師小結。
這節(jié)課我們學習了哪些知識?你還有什么問題嗎?
五、作業(yè)。課本練習