教案作為一種指導性文檔,能夠幫助教師有條不紊地進行教學,并提供參考和借鑒。教案的編寫應注意如何培養(yǎng)學生的創(chuàng)新思維和實踐能力?教案的編寫需要不斷積累和總結經(jīng)驗,這些教案范文可以給我們提供一些思路和啟發(fā)。
三角形的內角和教案篇一
人教版義務教育課程標準試驗教科書數(shù)學四年級下冊第67頁。
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一?!稊?shù)學課程標準》指出,讓學生學習有價值的數(shù)學,讓學生帶著問題、帶著自己的思想、自己的思維進入數(shù)學課堂,對于學生的數(shù)學學習有著重要作用。因此,我嘗試著將數(shù)學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養(yǎng)學生提出問題、分析問題和解決問題的探究能力。
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內角和是180。
學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。
1、使學生經(jīng)歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規(guī)律解決一些簡單的問題。
2、使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數(shù)學思考能力。
三角形的內角和教案篇二
根據(jù)上面三組實驗分別證明了銳角三角形、直角三角形、鈍角三角形的內角和都等于180度。
四、練一練。
請學生自己畫任意的`三角形,并用剛才老師所講的方法自己來判斷一下三角形的內角和。
五、實踐活動:
第1題:用紙剪出一個等邊三角形。
第2題:將等邊三角形兩邊取中點,并向底作垂線,
第3題:把紙沿著虛線對折。
第4題:觀察三個角的內角加起來為多少?
三角形的內角和教案篇三
“三角形內角和”是人教版數(shù)學四年級下冊的一節(jié)探索與發(fā)現(xiàn)課,讓學生在學習了三角形的特征、高以及三角形分類的基礎上,進一步研究三角形三個角的關系。本節(jié)課學生對知識點的掌握還不錯,但是,這一節(jié)課還有很多不足之處,需要加以改進:
1、教學設計不錯,環(huán)節(jié)緊湊,思路清晰。
2、重視操作過程,時間把握得好。本節(jié)課用了大量的時間來讓學生做小組實驗,從而讓他們自己感知三角形內角和是180°,印象深刻。
3、能注意前后照應,解決了前面的疑問。在講授新課前,設置一個疑問“為什么同一個三角形不能有兩個直角?”以此來吸引學生,找出三角形內角和的特性。在掌握了三角形內角和是180°后,再次把問題提出來,讓學生解決。
4、板書巧妙,一步步引入課題。先是讓學生復習“三角形”的定義,接著簡單說明什么是“三角形內角”,最后再講授三角形三個內角度數(shù)的和叫做“三角形內角和”。
5、課堂紀律好,氣氛活躍,學生踴躍積極。學生在小組活動時,活躍而有序,上課時能認真聽講,積極舉手。同時,實行小組評價更是發(fā)揮了學生的主動性。
6、求三角形內角和的方法,一個比一個直觀、生動。從量一量、算一算,到剪一剪、折一折,讓學生更容易感受到三角形內角和是180°。
7、練習題設計得比較好,特別是判斷題,都是學生平時容易出錯的題目,在課堂上用比較直觀的課件顯示出來,讓學生的印象深刻。組合題也很有靈活性,先是找出能組成三角形的度數(shù),然后根據(jù)度數(shù)判斷出是什么三角形。
8、能尊重學生的意見,有的小組沒有在算一算的時候,沒有得出180°的結果,老師能夠分析其中的原因。
1、在老師給出“畫有2個內角是直角的三角形”的任務時,學生明顯是畫不出來。但是教師也可以把學生失敗的作品展示出來,照應之后的講解。而不能一帶而過。
2、如果量一量的方法,不能讓人信服,要在后面打個“?”,等到解決疑問后,再去掉。
3、在進行剪一剪、折一折的活動時,老師應該先用板書上的三角形來示范一次,告訴學生應該怎么做。因為有些學生折不出來。拼的時候,也有出錯。
4、把三角形拼成平角后,要用直尺或者是量角器測量一下,看看得出的圖形是不是平角,要用嚴謹?shù)膽B(tài)度對待,不能光用眼睛來判斷。
5、老師注意提醒學生讀題的時候要規(guī)范,要讀出度數(shù)單位,這很好。但是,在做題練習時,應該請一兩個學生在黑板上做,這樣也便于教師提醒學生,在書寫時,也要注意寫上度數(shù)單位,強調格式。
三角形的內角和教案篇四
l教學目標:
知識與技能目標:
1.會用平行線的性質與平角的定義證明三角形內角和等于180o;。
2.能用三角形內角和等于180o進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉化思想在解決問題中的應用.
過程與方法目標:
2.掌握三角形內角和定理,并初步學會利用輔助線證題,同時培養(yǎng)學生觀察、猜想和論證能力..
情感態(tài)度與價值觀目標:
1.通過操作、交流、探究、表述、推理等活動,培養(yǎng)學生的合作精神,體會數(shù)學知識內在的聯(lián)系與嚴謹性,鼓勵學生大膽提出疑問,培養(yǎng)學生良好的學習習慣.
l重點:
難點:
l教學流程:
一、情境引入。
內角三兄弟之爭。
在一個直角三角形里住著三個內角,平時,它們三兄弟非常團結可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起了……”“為什么?”老二很納悶.
同學們,你們知道其中的道理嗎?
目的:通過對話激發(fā)學生的求知欲;讓學生通過小組討論:其中的道理.
三角形的內角和教案篇五
2.弄清三角形按角的分類,會按角的大小對三角形進行分類;。
3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)。
5.通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉化的辯證思想。
直尺、微機。
互動式,談話法。
1、創(chuàng)設情境,自然引入。
把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題2你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內容(板書課題)。
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內容自然合理。
2、設問質疑,探究嘗試。
讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1觀察:三個內角拼成了一個什么角?
問題2此實驗給我們一個什么啟示?
問題3由圖中ab與cd的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內角之和為定值,那么對三角形的其它角還有哪些特殊的關系呢?
問題1直角三角形中,直角與其它兩個銳角有何關系?
問題2三角形一個外角與它不相鄰的兩個內角有何關系?
問題3三角形一個外角與其中的一個不相鄰內角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
引導學生分析并嚴格書寫解題過程。
三角形的內角和教案篇六
1、知識與技能:
(2)運用三角形的內角和知識解決實際問題和拓展性問題。
2、過程與方法:
(1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內角的和等于180°。
(2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
(3)發(fā)展學生動手操作、觀察比較和抽象概括的能力。
3、情感態(tài)度與價值觀:
讓學生體驗數(shù)學活動的探索樂趣,通過教學中的活動體會數(shù)學的轉化思想。
教學課件、各種三角形。
1、猜謎語:。
形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。
(打一圖形名稱)。
2、猜三角形。
3、引出課題。
師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學王國,探討三角形的內角和的奧秘。(板書課題)。
2、猜一猜。
3、驗證。
4、學生匯報。
(1)測量。
(2)剪拼。
a、學生上臺演示。
b、請大家三人小組合作,用剪拼的方法驗證其它三角形。
c、師演示。
(3)折拼。
師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。
(5)數(shù)學小知識。
5、鞏固知識。
教師:為什么不是360°?
師:接下來,利用三角形的內角和我們來解決一些相關的問題吧!
1、看圖,求未知角的度數(shù)。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?
(1)我三邊相等。
(2)我是等腰三角形,我的頂角是96°。
(3)我有一個銳角是40°。
4、求四邊形、五邊形內角和。
師:這節(jié)課你有什么收獲?
三角形的內角和教案篇七
一、構建新的課堂教學模式。
傳統(tǒng)的教學往往只重視對結論的記憶和模仿,而這節(jié)課老師把學生的學習定位在自主建構知識的基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養(yǎng)學生勇于猜想,大膽創(chuàng)新的精神。
教學中老師遵循的基本教學原則是激勵學生展開積極的思維活動。先創(chuàng)設猜角的游戲情景,讓學生對三角形的三個角的度數(shù)關系產(chǎn)生好奇,引發(fā)學生的探究欲望。
三、為學生提供了大量數(shù)學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔?!边@正是課堂教學改革中學生的主體性的表現(xiàn)。所以在這節(jié)課中老師樹立了數(shù)學教學為學生服務,創(chuàng)設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發(fā)學生去思考,去探究。這樣學生的潛能的以激活,思維展開了想象,能力得以發(fā)展。
四、給學生一個開放探究的學習空間。
培養(yǎng)學生的問題意識是數(shù)學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發(fā)出新的問題,使學生體會到成功的喜悅,使數(shù)學課堂充滿挑戰(zhàn)。所以課堂上老師沒有因學生發(fā)現(xiàn)三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規(guī)律,這樣學生帶著問題在課后向更高的學習目標繼續(xù)探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
將本文的word文檔下載到電腦,方便收藏和打印。
三角形的內角和教案篇八
一、構建新的課堂教學模式。
傳統(tǒng)的教學往往只重視對結論的記憶和模仿,而這節(jié)課老師把學生的學習定位在自主建構知識的.基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養(yǎng)學生勇于猜想,大膽創(chuàng)新的精神。
教學中趙老師遵循的基本教學原則是激勵學生展開積極的思維活動.先創(chuàng)設猜角的游戲情景,讓學生對三角形的三個角的度數(shù)關系產(chǎn)生好奇,引發(fā)學生的探究欲望.
三、為學生提供了大量數(shù)學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔.”這正是課堂教學改革中學生的主體性的表現(xiàn)。所以在這節(jié)課中趙老師樹立了數(shù)學教學為學生服務,創(chuàng)設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發(fā)學生去思考,去探究.這樣學生的潛能的以激活,思維展開了想象,能力得以發(fā)展.
四、給學生一個開放探究的學習空間.
培養(yǎng)學生的問題意識是數(shù)學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發(fā)出新的問題,使學生體會到成功的喜悅,使數(shù)學課堂充滿挑戰(zhàn).所以課堂上老師沒有因學生發(fā)現(xiàn)三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規(guī)律,這樣學生帶著問題在課后向更高的學習目標繼續(xù)探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
三角形的內角和教案篇九
一、說課內容:北師大版義務教育課程標準實驗教材小學數(shù)學四年級下冊第二單元第三節(jié)----《三角形的內角和》一課。
二、教材分析:
在這一環(huán)節(jié)我要闡述四方面的內容:
1、三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,教材呈現(xiàn)教學內容時,安排了一系列的實驗操作活動。讓學生通過探索,發(fā)現(xiàn)三角形的內角和是180度。
2、學情分析:
學生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學生知道了三角形內角和是180°的結論。
3、教學目標:
a、讓學生親自動手,發(fā)現(xiàn),證實三角形的內角和等于180度。并能初步運用這一性質解決有一些實際問題。
b、在經(jīng)歷“觀察、測量、撕拼、折疊”的驗證的過程中培養(yǎng)學生觀察能力,歸納能力、合作能力和創(chuàng)造能力。
4、教學重難點:
經(jīng)歷三角形的內角和是180度這一知識的形成,發(fā)展和應用的全過程。
5、教學難點:
讓學生用不同方法驗證三角形的內角和是180度。
三、教學準備:
在備課過程中,我閱讀了農遠光盤中多位名師的教學案例來完善自己的教學設計,并收集了農遠光盤中的多媒體課件,用課件適時播放。
四、教法分析
為了使教學目標得以落實,談談本課的教法和學法。新課程標準強調“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向學生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者。我采用了趣味教學法、情境教學法、引導發(fā)現(xiàn)法、合作探究法和直觀演示法。
五、學法分析
在學法指導上,我把學習的主動權交給學生,引導學生通過動手、動腦、動口,積極參與知識形成的全過程。體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式。
六:教學流程:
(一)猜迷激趣,復習舊知。,
興趣是最好的老師,開課我出示了一則謎語。調動學生學習的積極性。
形狀是似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。(打一平面圖形)
由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學生頭腦中有關三角形的知識,同時很自然引出對“三角形內角和”一詞的講解,為后面的探索奠定基礎。
(二)創(chuàng)設情境,巧引新知(課件出示)
(三)驗證猜想,主動探究。
本環(huán)節(jié)是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經(jīng)歷知識的形成過程。
“你能運用已有的知識和身邊的學具想辦法驗證你的猜想嗎?”學生思考片刻后,我出示學習提綱:
a、先獨立思考,你想怎樣驗證?
b、再小組合作探究,運用多種方法驗證。
c、最后匯報,展示你的驗證方法。
1.量角求和
這個驗證方法應是全班同學都能想到的,因此,在這一環(huán)節(jié)我設計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學生通過畫、量、算,最后發(fā)現(xiàn)三角形的三個內角和都是180度。
2.拼角求和
通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學生在以前學過平角是180度,很快就發(fā)現(xiàn)這三個三角形的內角和都是180度。為了讓全班學生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學生一目了然,攻克了本課的一個教學重點。
3.折角求和
有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內角剛好組成平角呢?這一驗證方法是本課教學的一個難點。
在學生展示完驗證方法后,我又讓每位學生選擇自己喜歡的方法,再去驗證剛才的發(fā)現(xiàn)。最后歸納出結論:所有三角形的內角和都是180度。
(四)應用新知,解決問題。
數(shù)學離不開練習。本節(jié)課我把圖像、動畫等引入課件,使練習的內容具有簡單的背景與情節(jié),使學生對解題產(chǎn)生了濃厚的興趣。
我設計了四個層次的練習:有序而多樣。
1)基本練習:讓學生通過這一習題,掌握求未知角的一般方法。
2)實踐運用:這一習題的設計是為了讓學生知道生活中到處都有數(shù)學,數(shù)學能解決生活實際問題,真切體驗到學的是有價值的數(shù)學。
3)鞏固提高:使學生了解在間接條件下求未知角的方法。
4)拓展延伸。讓學生體會到數(shù)學中輔助線的橋梁作用,在潛移默化中滲透一個重要數(shù)學思想―――轉化,為以后學習數(shù)學打下堅實的基礎。
(五)全課小結完善新知
1、這節(jié)課我們學到了什么知識?2、你有什么收獲?
通過學生談這節(jié)課的收獲,對所學知識和學習方法進行系統(tǒng)的整理歸納。
(六)板書設計
三角形的內角和
量角撕拼折角拼圖
三角形的內角和是180度。
六、說效果預測:
本課中,學生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內角和的知識,也使學生學到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。促進學生良好思維品質的形成,達到預想的教學目的。使學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長!
三角形的內角和教案篇十
三角形的內角和定理及推論:
三角形的內角和定理:三角形三個內角和等于180°。
推論:
(1)直角三角形的兩個銳角互余。
(2)三角形的一個外角等于和它不相鄰的來兩個內角的和。
(3)三角形的一個外角大于任何一個和它不相鄰的內角。
注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。
三角形的內角和教案篇十一
“三角形的內角和”是人教版小學數(shù)學四年級下冊第五單元第四節(jié)的內容,“三角形的內角和”是三角形的一個重要性質。本課教學內容不算多,學生只需要翻看課本就會知道三角形的內角和是180°,但是陳麗老師并沒有讓學生這樣做?!皵?shù)學學習的過程實際上是數(shù)學活動的過程”。課程標準要求我們“將課堂還給學生,讓課堂煥發(fā)生命的活力”,要求我們“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創(chuàng)造者,落實學生的主體地位,促進學生的自主學習和探究。”在教學中,陳老師力求探究,將教學思路擬定為“創(chuàng)設情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結——拓展應用,反思升華”四個環(huán)節(jié),努力構建探究型的課堂教學模式。具體體現(xiàn)在以下幾個方面:
課一開始,陳老師創(chuàng)設了一個實踐操作的活動情境:讓學生畫一個含有兩個直角的三角形。很顯然三角形是畫不出來的,學生同樣也不知道畫不出來。簡單的活動激活了學生的思維,讓他們產(chǎn)生了問題:是不是三角形的角有些什么秘密呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
在教學中,陳老師巧妙運用“猜想、驗證”的方式引導學生進行自主學習和探究活動。學生大膽猜想三角形的內角和是180°,讓學生對問題形成了統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。這個時候,陳老師就把課堂大量的時間和空間留給學生,在學生交流探究設想和打算采用的方法后,放手讓每個同學自主參與驗證活動,在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,同時發(fā)展空間觀念和論證推理能力。驗證的具體過程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結論的形成不缺乏科學性。這個環(huán)節(jié)的設計更重要的是變“聽數(shù)學”為“做數(shù)學”,讓學生在“做中學”。
學生在活動中體驗,在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識的層面上,陳老師還引導學生對獲得知識所用的方法進行了總結,加強了學法指導。
課程標準提倡練習的.有效性。本節(jié)課的練習設計陳老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用。兩個小三角形拼成一個較大的三角形互動練習讓學生進一步理解任意三角形的內角和都是180°;后面的練習設計從圖形到文字,由一般到特殊;“開心一刻”更是把學生帶到無窮的學習樂趣之中。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
兩點建議:
2、學生的猜想結果都是180°,這時老師是否可以反問:你們是怎樣知道的?便于學生的學習活動更流暢的進入下一個環(huán)節(jié)。
總之,我個人認為陳老師對“四步教學法”模式的把握是成功的,學生在這種課堂教學模式下的學習是自主的,是活動的,也是快樂的。
三角形的內角和教案篇十二
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經(jīng)掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
2、已經(jīng)有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內角和等于180°并會應用這一規(guī)律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
針對這一目標的完成,我設計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)
檢測學習目標1的掌握情況。
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
學具準備:三角板、量角器.
這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、總結評價、延伸知識。
第一環(huán)節(jié),觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發(fā)現(xiàn)在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
第二環(huán)節(jié),動手操作,探索新知。
1、直角三角形的內角和。
(一)直角三角形內角和
先讓學生觀察一副三角板的內角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
(二)、銳角三角形、鈍角三角形的內角和
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環(huán)節(jié)、鞏固新知,拓展應用
用三角形的這一特性來解決一些問題
1、基本練習
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習
拼一拼、想一想
(1)兩個三角形拼成大三角形,說出大三角形的內角和
(2)一個三角形去掉一部分
引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數(shù)和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數(shù)嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數(shù)學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環(huán)節(jié)、總結評價、延伸知識
通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
三角形的內角和
猜測(180度)
驗證:測量、撕拼、折疊結論
三角形的內角和是180度
我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
三角形的內角和教案篇十三
1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執(zhí),到的誰的內角和大呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時謝老師就提到到底三角形的內角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
3、善用驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的`數(shù)學探究活動{即驗證三角形的內角和是否是180度?},在活動中,把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓(轉自數(shù)學吧http://)每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導鞏固內化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內角和后,你知道四邊形的內角和是多少度嗎?這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學活動中謝老師充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
三角形的內角和教案篇十四
(1)知識與技能:
掌握三角形內角和定理的證明過程,并能根據(jù)這個定理解決實際問題。
(2)過程與方法:
通過學生猜想動手實驗,互相交流,師生合作等活動探索三角形內角和為180度,發(fā)展學生的推理能力和語言表達能力。對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。逐漸由實驗過渡到論證。
通過一題多解、一題多變等,初步體會思維的多向性,引導學生的個性化發(fā)展。
(3)情感態(tài)度與價值觀:
通過猜想、推理等數(shù)學活動,感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生的學習數(shù)學的興趣。使學生主動探索,敢于實驗,勇于發(fā)現(xiàn),合作交流。
三角形的內角和教案篇十五
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經(jīng)掌握了角的`分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
2、已經(jīng)有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內角和等于180°并會應用這一規(guī)律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
針對這一目標的完成,我設計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
1、通過3個練習題(1、做一做。2、說一說.3、拼一拼、想一想。)。
檢測學習目標1的掌握情況。
2、通過小組、同桌合作、匯報,教師引導學生理解本節(jié)課所蘊含的學習方法,檢測學習目標2的掌握情況。
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格。
學具準備:三角板、量角器。
這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、總結評價、延伸知識。
第一環(huán)節(jié),觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發(fā)現(xiàn)在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
第二環(huán)節(jié),動手操作,探索新知。
先讓學生觀察一副三角板的內角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環(huán)節(jié)、鞏固新知,拓展應用。
用三角形的這一特性來解決一些問題。
1、基本練習。
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習。
拼一拼、想一想。
(1)兩個三角形拼成大三角形,說出大三角形的內角和。
(2)一個三角形去掉一部分。
引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數(shù)和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數(shù)嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數(shù)學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環(huán)節(jié)、總結評價、延伸知識。
通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
猜測(180度)。
驗證:測量、撕拼、折疊結論。
我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
三角形的內角和教案篇一
人教版義務教育課程標準試驗教科書數(shù)學四年級下冊第67頁。
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一?!稊?shù)學課程標準》指出,讓學生學習有價值的數(shù)學,讓學生帶著問題、帶著自己的思想、自己的思維進入數(shù)學課堂,對于學生的數(shù)學學習有著重要作用。因此,我嘗試著將數(shù)學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養(yǎng)學生提出問題、分析問題和解決問題的探究能力。
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內角和是180。
學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。
1、使學生經(jīng)歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規(guī)律解決一些簡單的問題。
2、使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數(shù)學思考能力。
三角形的內角和教案篇二
根據(jù)上面三組實驗分別證明了銳角三角形、直角三角形、鈍角三角形的內角和都等于180度。
四、練一練。
請學生自己畫任意的`三角形,并用剛才老師所講的方法自己來判斷一下三角形的內角和。
五、實踐活動:
第1題:用紙剪出一個等邊三角形。
第2題:將等邊三角形兩邊取中點,并向底作垂線,
第3題:把紙沿著虛線對折。
第4題:觀察三個角的內角加起來為多少?
三角形的內角和教案篇三
“三角形內角和”是人教版數(shù)學四年級下冊的一節(jié)探索與發(fā)現(xiàn)課,讓學生在學習了三角形的特征、高以及三角形分類的基礎上,進一步研究三角形三個角的關系。本節(jié)課學生對知識點的掌握還不錯,但是,這一節(jié)課還有很多不足之處,需要加以改進:
1、教學設計不錯,環(huán)節(jié)緊湊,思路清晰。
2、重視操作過程,時間把握得好。本節(jié)課用了大量的時間來讓學生做小組實驗,從而讓他們自己感知三角形內角和是180°,印象深刻。
3、能注意前后照應,解決了前面的疑問。在講授新課前,設置一個疑問“為什么同一個三角形不能有兩個直角?”以此來吸引學生,找出三角形內角和的特性。在掌握了三角形內角和是180°后,再次把問題提出來,讓學生解決。
4、板書巧妙,一步步引入課題。先是讓學生復習“三角形”的定義,接著簡單說明什么是“三角形內角”,最后再講授三角形三個內角度數(shù)的和叫做“三角形內角和”。
5、課堂紀律好,氣氛活躍,學生踴躍積極。學生在小組活動時,活躍而有序,上課時能認真聽講,積極舉手。同時,實行小組評價更是發(fā)揮了學生的主動性。
6、求三角形內角和的方法,一個比一個直觀、生動。從量一量、算一算,到剪一剪、折一折,讓學生更容易感受到三角形內角和是180°。
7、練習題設計得比較好,特別是判斷題,都是學生平時容易出錯的題目,在課堂上用比較直觀的課件顯示出來,讓學生的印象深刻。組合題也很有靈活性,先是找出能組成三角形的度數(shù),然后根據(jù)度數(shù)判斷出是什么三角形。
8、能尊重學生的意見,有的小組沒有在算一算的時候,沒有得出180°的結果,老師能夠分析其中的原因。
1、在老師給出“畫有2個內角是直角的三角形”的任務時,學生明顯是畫不出來。但是教師也可以把學生失敗的作品展示出來,照應之后的講解。而不能一帶而過。
2、如果量一量的方法,不能讓人信服,要在后面打個“?”,等到解決疑問后,再去掉。
3、在進行剪一剪、折一折的活動時,老師應該先用板書上的三角形來示范一次,告訴學生應該怎么做。因為有些學生折不出來。拼的時候,也有出錯。
4、把三角形拼成平角后,要用直尺或者是量角器測量一下,看看得出的圖形是不是平角,要用嚴謹?shù)膽B(tài)度對待,不能光用眼睛來判斷。
5、老師注意提醒學生讀題的時候要規(guī)范,要讀出度數(shù)單位,這很好。但是,在做題練習時,應該請一兩個學生在黑板上做,這樣也便于教師提醒學生,在書寫時,也要注意寫上度數(shù)單位,強調格式。
三角形的內角和教案篇四
l教學目標:
知識與技能目標:
1.會用平行線的性質與平角的定義證明三角形內角和等于180o;。
2.能用三角形內角和等于180o進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉化思想在解決問題中的應用.
過程與方法目標:
2.掌握三角形內角和定理,并初步學會利用輔助線證題,同時培養(yǎng)學生觀察、猜想和論證能力..
情感態(tài)度與價值觀目標:
1.通過操作、交流、探究、表述、推理等活動,培養(yǎng)學生的合作精神,體會數(shù)學知識內在的聯(lián)系與嚴謹性,鼓勵學生大膽提出疑問,培養(yǎng)學生良好的學習習慣.
l重點:
難點:
l教學流程:
一、情境引入。
內角三兄弟之爭。
在一個直角三角形里住著三個內角,平時,它們三兄弟非常團結可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起了……”“為什么?”老二很納悶.
同學們,你們知道其中的道理嗎?
目的:通過對話激發(fā)學生的求知欲;讓學生通過小組討論:其中的道理.
三角形的內角和教案篇五
2.弄清三角形按角的分類,會按角的大小對三角形進行分類;。
3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)。
5.通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉化的辯證思想。
直尺、微機。
互動式,談話法。
1、創(chuàng)設情境,自然引入。
把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題2你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內容(板書課題)。
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內容自然合理。
2、設問質疑,探究嘗試。
讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1觀察:三個內角拼成了一個什么角?
問題2此實驗給我們一個什么啟示?
問題3由圖中ab與cd的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內角之和為定值,那么對三角形的其它角還有哪些特殊的關系呢?
問題1直角三角形中,直角與其它兩個銳角有何關系?
問題2三角形一個外角與它不相鄰的兩個內角有何關系?
問題3三角形一個外角與其中的一個不相鄰內角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
引導學生分析并嚴格書寫解題過程。
三角形的內角和教案篇六
1、知識與技能:
(2)運用三角形的內角和知識解決實際問題和拓展性問題。
2、過程與方法:
(1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內角的和等于180°。
(2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
(3)發(fā)展學生動手操作、觀察比較和抽象概括的能力。
3、情感態(tài)度與價值觀:
讓學生體驗數(shù)學活動的探索樂趣,通過教學中的活動體會數(shù)學的轉化思想。
教學課件、各種三角形。
1、猜謎語:。
形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。
(打一圖形名稱)。
2、猜三角形。
3、引出課題。
師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學王國,探討三角形的內角和的奧秘。(板書課題)。
2、猜一猜。
3、驗證。
4、學生匯報。
(1)測量。
(2)剪拼。
a、學生上臺演示。
b、請大家三人小組合作,用剪拼的方法驗證其它三角形。
c、師演示。
(3)折拼。
師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。
(5)數(shù)學小知識。
5、鞏固知識。
教師:為什么不是360°?
師:接下來,利用三角形的內角和我們來解決一些相關的問題吧!
1、看圖,求未知角的度數(shù)。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?
(1)我三邊相等。
(2)我是等腰三角形,我的頂角是96°。
(3)我有一個銳角是40°。
4、求四邊形、五邊形內角和。
師:這節(jié)課你有什么收獲?
三角形的內角和教案篇七
一、構建新的課堂教學模式。
傳統(tǒng)的教學往往只重視對結論的記憶和模仿,而這節(jié)課老師把學生的學習定位在自主建構知識的基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養(yǎng)學生勇于猜想,大膽創(chuàng)新的精神。
教學中老師遵循的基本教學原則是激勵學生展開積極的思維活動。先創(chuàng)設猜角的游戲情景,讓學生對三角形的三個角的度數(shù)關系產(chǎn)生好奇,引發(fā)學生的探究欲望。
三、為學生提供了大量數(shù)學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔?!边@正是課堂教學改革中學生的主體性的表現(xiàn)。所以在這節(jié)課中老師樹立了數(shù)學教學為學生服務,創(chuàng)設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發(fā)學生去思考,去探究。這樣學生的潛能的以激活,思維展開了想象,能力得以發(fā)展。
四、給學生一個開放探究的學習空間。
培養(yǎng)學生的問題意識是數(shù)學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發(fā)出新的問題,使學生體會到成功的喜悅,使數(shù)學課堂充滿挑戰(zhàn)。所以課堂上老師沒有因學生發(fā)現(xiàn)三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規(guī)律,這樣學生帶著問題在課后向更高的學習目標繼續(xù)探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
將本文的word文檔下載到電腦,方便收藏和打印。
三角形的內角和教案篇八
一、構建新的課堂教學模式。
傳統(tǒng)的教學往往只重視對結論的記憶和模仿,而這節(jié)課老師把學生的學習定位在自主建構知識的.基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養(yǎng)學生勇于猜想,大膽創(chuàng)新的精神。
教學中趙老師遵循的基本教學原則是激勵學生展開積極的思維活動.先創(chuàng)設猜角的游戲情景,讓學生對三角形的三個角的度數(shù)關系產(chǎn)生好奇,引發(fā)學生的探究欲望.
三、為學生提供了大量數(shù)學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔.”這正是課堂教學改革中學生的主體性的表現(xiàn)。所以在這節(jié)課中趙老師樹立了數(shù)學教學為學生服務,創(chuàng)設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發(fā)學生去思考,去探究.這樣學生的潛能的以激活,思維展開了想象,能力得以發(fā)展.
四、給學生一個開放探究的學習空間.
培養(yǎng)學生的問題意識是數(shù)學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發(fā)出新的問題,使學生體會到成功的喜悅,使數(shù)學課堂充滿挑戰(zhàn).所以課堂上老師沒有因學生發(fā)現(xiàn)三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規(guī)律,這樣學生帶著問題在課后向更高的學習目標繼續(xù)探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
三角形的內角和教案篇九
一、說課內容:北師大版義務教育課程標準實驗教材小學數(shù)學四年級下冊第二單元第三節(jié)----《三角形的內角和》一課。
二、教材分析:
在這一環(huán)節(jié)我要闡述四方面的內容:
1、三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,教材呈現(xiàn)教學內容時,安排了一系列的實驗操作活動。讓學生通過探索,發(fā)現(xiàn)三角形的內角和是180度。
2、學情分析:
學生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學生知道了三角形內角和是180°的結論。
3、教學目標:
a、讓學生親自動手,發(fā)現(xiàn),證實三角形的內角和等于180度。并能初步運用這一性質解決有一些實際問題。
b、在經(jīng)歷“觀察、測量、撕拼、折疊”的驗證的過程中培養(yǎng)學生觀察能力,歸納能力、合作能力和創(chuàng)造能力。
4、教學重難點:
經(jīng)歷三角形的內角和是180度這一知識的形成,發(fā)展和應用的全過程。
5、教學難點:
讓學生用不同方法驗證三角形的內角和是180度。
三、教學準備:
在備課過程中,我閱讀了農遠光盤中多位名師的教學案例來完善自己的教學設計,并收集了農遠光盤中的多媒體課件,用課件適時播放。
四、教法分析
為了使教學目標得以落實,談談本課的教法和學法。新課程標準強調“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向學生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者。我采用了趣味教學法、情境教學法、引導發(fā)現(xiàn)法、合作探究法和直觀演示法。
五、學法分析
在學法指導上,我把學習的主動權交給學生,引導學生通過動手、動腦、動口,積極參與知識形成的全過程。體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式。
六:教學流程:
(一)猜迷激趣,復習舊知。,
興趣是最好的老師,開課我出示了一則謎語。調動學生學習的積極性。
形狀是似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。(打一平面圖形)
由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學生頭腦中有關三角形的知識,同時很自然引出對“三角形內角和”一詞的講解,為后面的探索奠定基礎。
(二)創(chuàng)設情境,巧引新知(課件出示)
(三)驗證猜想,主動探究。
本環(huán)節(jié)是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經(jīng)歷知識的形成過程。
“你能運用已有的知識和身邊的學具想辦法驗證你的猜想嗎?”學生思考片刻后,我出示學習提綱:
a、先獨立思考,你想怎樣驗證?
b、再小組合作探究,運用多種方法驗證。
c、最后匯報,展示你的驗證方法。
1.量角求和
這個驗證方法應是全班同學都能想到的,因此,在這一環(huán)節(jié)我設計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學生通過畫、量、算,最后發(fā)現(xiàn)三角形的三個內角和都是180度。
2.拼角求和
通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學生在以前學過平角是180度,很快就發(fā)現(xiàn)這三個三角形的內角和都是180度。為了讓全班學生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學生一目了然,攻克了本課的一個教學重點。
3.折角求和
有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內角剛好組成平角呢?這一驗證方法是本課教學的一個難點。
在學生展示完驗證方法后,我又讓每位學生選擇自己喜歡的方法,再去驗證剛才的發(fā)現(xiàn)。最后歸納出結論:所有三角形的內角和都是180度。
(四)應用新知,解決問題。
數(shù)學離不開練習。本節(jié)課我把圖像、動畫等引入課件,使練習的內容具有簡單的背景與情節(jié),使學生對解題產(chǎn)生了濃厚的興趣。
我設計了四個層次的練習:有序而多樣。
1)基本練習:讓學生通過這一習題,掌握求未知角的一般方法。
2)實踐運用:這一習題的設計是為了讓學生知道生活中到處都有數(shù)學,數(shù)學能解決生活實際問題,真切體驗到學的是有價值的數(shù)學。
3)鞏固提高:使學生了解在間接條件下求未知角的方法。
4)拓展延伸。讓學生體會到數(shù)學中輔助線的橋梁作用,在潛移默化中滲透一個重要數(shù)學思想―――轉化,為以后學習數(shù)學打下堅實的基礎。
(五)全課小結完善新知
1、這節(jié)課我們學到了什么知識?2、你有什么收獲?
通過學生談這節(jié)課的收獲,對所學知識和學習方法進行系統(tǒng)的整理歸納。
(六)板書設計
三角形的內角和
量角撕拼折角拼圖
三角形的內角和是180度。
六、說效果預測:
本課中,學生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內角和的知識,也使學生學到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。促進學生良好思維品質的形成,達到預想的教學目的。使學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長!
三角形的內角和教案篇十
三角形的內角和定理及推論:
三角形的內角和定理:三角形三個內角和等于180°。
推論:
(1)直角三角形的兩個銳角互余。
(2)三角形的一個外角等于和它不相鄰的來兩個內角的和。
(3)三角形的一個外角大于任何一個和它不相鄰的內角。
注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。
三角形的內角和教案篇十一
“三角形的內角和”是人教版小學數(shù)學四年級下冊第五單元第四節(jié)的內容,“三角形的內角和”是三角形的一個重要性質。本課教學內容不算多,學生只需要翻看課本就會知道三角形的內角和是180°,但是陳麗老師并沒有讓學生這樣做?!皵?shù)學學習的過程實際上是數(shù)學活動的過程”。課程標準要求我們“將課堂還給學生,讓課堂煥發(fā)生命的活力”,要求我們“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創(chuàng)造者,落實學生的主體地位,促進學生的自主學習和探究。”在教學中,陳老師力求探究,將教學思路擬定為“創(chuàng)設情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結——拓展應用,反思升華”四個環(huán)節(jié),努力構建探究型的課堂教學模式。具體體現(xiàn)在以下幾個方面:
課一開始,陳老師創(chuàng)設了一個實踐操作的活動情境:讓學生畫一個含有兩個直角的三角形。很顯然三角形是畫不出來的,學生同樣也不知道畫不出來。簡單的活動激活了學生的思維,讓他們產(chǎn)生了問題:是不是三角形的角有些什么秘密呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
在教學中,陳老師巧妙運用“猜想、驗證”的方式引導學生進行自主學習和探究活動。學生大膽猜想三角形的內角和是180°,讓學生對問題形成了統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。這個時候,陳老師就把課堂大量的時間和空間留給學生,在學生交流探究設想和打算采用的方法后,放手讓每個同學自主參與驗證活動,在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,同時發(fā)展空間觀念和論證推理能力。驗證的具體過程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結論的形成不缺乏科學性。這個環(huán)節(jié)的設計更重要的是變“聽數(shù)學”為“做數(shù)學”,讓學生在“做中學”。
學生在活動中體驗,在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識的層面上,陳老師還引導學生對獲得知識所用的方法進行了總結,加強了學法指導。
課程標準提倡練習的.有效性。本節(jié)課的練習設計陳老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用。兩個小三角形拼成一個較大的三角形互動練習讓學生進一步理解任意三角形的內角和都是180°;后面的練習設計從圖形到文字,由一般到特殊;“開心一刻”更是把學生帶到無窮的學習樂趣之中。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
兩點建議:
2、學生的猜想結果都是180°,這時老師是否可以反問:你們是怎樣知道的?便于學生的學習活動更流暢的進入下一個環(huán)節(jié)。
總之,我個人認為陳老師對“四步教學法”模式的把握是成功的,學生在這種課堂教學模式下的學習是自主的,是活動的,也是快樂的。
三角形的內角和教案篇十二
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經(jīng)掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
2、已經(jīng)有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內角和等于180°并會應用這一規(guī)律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
針對這一目標的完成,我設計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)
檢測學習目標1的掌握情況。
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
學具準備:三角板、量角器.
這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、總結評價、延伸知識。
第一環(huán)節(jié),觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發(fā)現(xiàn)在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
第二環(huán)節(jié),動手操作,探索新知。
1、直角三角形的內角和。
(一)直角三角形內角和
先讓學生觀察一副三角板的內角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
(二)、銳角三角形、鈍角三角形的內角和
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環(huán)節(jié)、鞏固新知,拓展應用
用三角形的這一特性來解決一些問題
1、基本練習
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習
拼一拼、想一想
(1)兩個三角形拼成大三角形,說出大三角形的內角和
(2)一個三角形去掉一部分
引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數(shù)和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數(shù)嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數(shù)學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環(huán)節(jié)、總結評價、延伸知識
通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
三角形的內角和
猜測(180度)
驗證:測量、撕拼、折疊結論
三角形的內角和是180度
我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
三角形的內角和教案篇十三
1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執(zhí),到的誰的內角和大呢?這樣,在很短的時間內最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時謝老師就提到到底三角形的內角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
3、善用驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的`數(shù)學探究活動{即驗證三角形的內角和是否是180度?},在活動中,把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓(轉自數(shù)學吧http://)每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導鞏固內化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內角和后,你知道四邊形的內角和是多少度嗎?這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學活動中謝老師充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
三角形的內角和教案篇十四
(1)知識與技能:
掌握三角形內角和定理的證明過程,并能根據(jù)這個定理解決實際問題。
(2)過程與方法:
通過學生猜想動手實驗,互相交流,師生合作等活動探索三角形內角和為180度,發(fā)展學生的推理能力和語言表達能力。對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。逐漸由實驗過渡到論證。
通過一題多解、一題多變等,初步體會思維的多向性,引導學生的個性化發(fā)展。
(3)情感態(tài)度與價值觀:
通過猜想、推理等數(shù)學活動,感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生的學習數(shù)學的興趣。使學生主動探索,敢于實驗,勇于發(fā)現(xiàn),合作交流。
三角形的內角和教案篇十五
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經(jīng)掌握了角的`分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
2、已經(jīng)有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內角和等于180°并會應用這一規(guī)律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
針對這一目標的完成,我設計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
1、通過3個練習題(1、做一做。2、說一說.3、拼一拼、想一想。)。
檢測學習目標1的掌握情況。
2、通過小組、同桌合作、匯報,教師引導學生理解本節(jié)課所蘊含的學習方法,檢測學習目標2的掌握情況。
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格。
學具準備:三角板、量角器。
這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、總結評價、延伸知識。
第一環(huán)節(jié),觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發(fā)現(xiàn)在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
第二環(huán)節(jié),動手操作,探索新知。
先讓學生觀察一副三角板的內角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環(huán)節(jié)、鞏固新知,拓展應用。
用三角形的這一特性來解決一些問題。
1、基本練習。
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習。
拼一拼、想一想。
(1)兩個三角形拼成大三角形,說出大三角形的內角和。
(2)一個三角形去掉一部分。
引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數(shù)和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數(shù)嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數(shù)學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環(huán)節(jié)、總結評價、延伸知識。
通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
猜測(180度)。
驗證:測量、撕拼、折疊結論。
我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。

