教案應(yīng)該注意教學(xué)步驟的合理性,注重知識(shí)的逐步展開和鞏固。編寫教案要注意在教學(xué)過程中注重啟發(fā)學(xué)生的思維,提高學(xué)生的學(xué)習(xí)能力。需要參考教案的老師們可以看看下面的范文,有助于提升教學(xué)設(shè)計(jì)能力。
八年級(jí)數(shù)學(xué)教案全套篇一
多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。
二、自主學(xué)習(xí),指向目標(biāo)。
學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書》相應(yīng)部分。
三、合作探究,達(dá)成目標(biāo)。
多邊形的定義及有關(guān)概念。
活動(dòng)一:閱讀教材p19。
小組討論:結(jié)合具體圖形說(shuō)出多邊形的邊、內(nèi)角、外角?
反思小結(jié):多邊形的定義及相關(guān)概念。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
多邊形的對(duì)角線。
活動(dòng)二:(1)十邊形的對(duì)角線有35條。
(2)如果經(jīng)過多邊形的一個(gè)頂點(diǎn)有36條對(duì)角線,這個(gè)多邊形是39邊形。
反思小結(jié):當(dāng)n為已知時(shí),可以直接代入求得對(duì)角線的條數(shù),當(dāng)對(duì)角線條數(shù)已知時(shí),可以化為方程來(lái)求多邊形的邊數(shù)。
小組討論:如何靈活運(yùn)用多邊形對(duì)角線條數(shù)的規(guī)律解題?
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
正多邊形的有關(guān)概念。
活動(dòng)二:閱讀教材p20。
小組討論:判斷一個(gè)多邊形是否是正多邊形的條件?
反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
四、總結(jié)梳理,內(nèi)化目標(biāo)。
本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí)是:
1、多邊形、多邊形的外角,多邊形的對(duì)角線。
2、凸凹多邊形的概念。
五、達(dá)標(biāo)檢測(cè),反思目標(biāo)。
1、下列敘述正確的是(d)。
a、每條邊都相等的多邊形是正多邊形。
c、每個(gè)角都相等的多邊形叫正多邊形。
d、每條邊、每個(gè)角都相等的多邊形叫正多邊形。
2、小學(xué)學(xué)過的下列圖形中不可能是正多邊形的是(d)。
a、三角形b。正方形c。四邊形d。梯形。
3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補(bǔ)角關(guān)系。
4、已知一個(gè)四邊形的四個(gè)內(nèi)角的比為1∶2∶3∶4,求這個(gè)四邊形的各個(gè)內(nèi)角的度數(shù)。
八年級(jí)數(shù)學(xué)教案全套篇二
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式。
問題農(nóng)科院計(jì)劃為某地選擇合適的甜玉米種子.選擇種子時(shí),甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關(guān)心的問題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗(yàn)田進(jìn)行試驗(yàn),得到各試驗(yàn)田每公頃的產(chǎn)量(單位:t)如表所示。
根據(jù)這些數(shù)據(jù)估計(jì),農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
來(lái)衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來(lái)衡量一批數(shù)據(jù)的波動(dòng)大小。
在樣本容量相同的情況下,方差越大,說(shuō)明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。
(1)研究離散程度可用。
(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的.波動(dòng)大小。
(3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)。
(4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的。
例題:在一次芭蕾舞比賽中,甲乙兩個(gè)芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
甲163164164165165166166167。
乙163165165166166167168168。
哪個(gè)芭蕾舞團(tuán)的女演員的身高比較整齊?
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4。
乙:9、5、7、8、7、6、8、6、7、7。
經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但s,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是()。
甲:0、1、0、2、2、0、3、1、2、4。
乙:2、3、1、2、0、2、1、1、2、1。
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
八年級(jí)數(shù)學(xué)教案全套篇三
教學(xué)目標(biāo):
〔知識(shí)與技能〕。
1.在生活實(shí)例中認(rèn)識(shí)軸對(duì)稱圖.
2.分析軸對(duì)稱圖形,理解軸對(duì)稱的概念.軸對(duì)稱圖形的概念。
〔過程與方法〕。
2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說(shuō)理和進(jìn)行簡(jiǎn)單推理的能力。
〔情感、態(tài)度與價(jià)值觀〕。
辯證唯物主義觀點(diǎn)。
教學(xué)重點(diǎn):.
理解軸對(duì)稱的概念。
教學(xué)難點(diǎn)。
能夠識(shí)別軸對(duì)稱圖形并找出它的對(duì)稱軸.
教具準(zhǔn)備:三角尺。
教學(xué)過程。
一.創(chuàng)設(shè)情境,引入新課。
1.舉實(shí)例說(shuō)明對(duì)稱的重要性和生活充滿著對(duì)稱。
2.對(duì)稱給我們帶來(lái)多少美的感受!初步掌握對(duì)稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.
3.軸對(duì)稱是對(duì)稱中重要的一種,讓我們一起走進(jìn)軸對(duì)稱世界,探索它的秘密吧!
二.導(dǎo)入新課。
1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.
強(qiáng)調(diào):對(duì)稱現(xiàn)象無(wú)處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對(duì)稱的例子.
練習(xí):從學(xué)生生活周圍的事物中來(lái)找一些具有對(duì)稱特征的例子.
3.如果一個(gè)圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸.我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)?對(duì)稱.
4.動(dòng)手操作:取一張質(zhì)地較硬的紙,將紙對(duì)折,并用小刀在紙的中央隨意。
刻出一個(gè)圖案,將紙打開后鋪平,你得到兩個(gè)成軸對(duì)稱的圖案了嗎?
歸納小結(jié):由此我們進(jìn)一步了解了軸對(duì)稱圖形的特征:一個(gè)圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.
5.練習(xí):你能找出它們的對(duì)稱軸嗎?分小組討論.
思考:大家想一想,你發(fā)現(xiàn)了什么?
小結(jié)得出:.像這樣,?把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱,?這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn).
三.隨堂練習(xí)。
1、課本60練習(xí)1、2。
四.課時(shí)小結(jié)。
分了軸對(duì)稱圖形和兩個(gè)圖形成軸對(duì)稱.
五.課后作業(yè)。
習(xí)題13.1.1、2、6題.
六.教后記。
八年級(jí)數(shù)學(xué)教案全套篇四
在教學(xué)中努力推進(jìn)九年義務(wù)教育,落實(shí)新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。
通過數(shù)學(xué)課的教學(xué),使學(xué)生切實(shí)學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所必需的數(shù)學(xué)基本知識(shí)和基本技能;努力培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力,以及分析問題和解決問題的能力。
二、學(xué)情分析
八年級(jí)是初中學(xué)習(xí)過程中的關(guān)鍵時(shí)期,學(xué)生基礎(chǔ)的好壞,直接影響到將來(lái)是否能升學(xué)。優(yōu)生不多,思想不夠活躍,有少數(shù)學(xué)生不上進(jìn),思維跟不上。要在本期獲得理想成績(jī),老師和學(xué)生都要付出努力,充分發(fā)揮學(xué)生是學(xué)習(xí)的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
三、本學(xué)期教學(xué)內(nèi)容分析
本學(xué)期教學(xué)內(nèi)容共計(jì)六章。
第一章《三角形的證明》
本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進(jìn)一步體會(huì)證明的必要性。
第二章《一元一次不等式和一元一次不等式組》
本章通過具體實(shí)例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應(yīng)用;通過具體實(shí)例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應(yīng)。
第三章《圖形的平移與旋轉(zhuǎn)》
本章將在小學(xué)學(xué)習(xí)的基礎(chǔ)上進(jìn)一步認(rèn)識(shí)平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認(rèn)識(shí)并欣賞平移,中心對(duì)稱在自然界和現(xiàn)實(shí)生活中的應(yīng)用。
第四章《分解因式》
本章通過具體實(shí)例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實(shí)質(zhì),最后學(xué)習(xí)分解因式的幾種基本方法。
第五章《分式與分式方程》
本章通過分?jǐn)?shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運(yùn)算法則,并在此基礎(chǔ)上學(xué)習(xí)分式的化簡(jiǎn)求值、解分式方程及列分式方程解應(yīng)用題,能解決簡(jiǎn)單的實(shí)際應(yīng)用問題。
第六章《平行四邊形》
本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實(shí)驗(yàn)等幾何發(fā)現(xiàn)之旅,享受證明之美。
四、主要措施
1、面向全體學(xué)生。
由于學(xué)生在知識(shí)、技能方面的發(fā)展和興趣、特長(zhǎng)等不盡相同,所以要因材施教。在組織教學(xué)時(shí),應(yīng)從大多數(shù)學(xué)生的實(shí)際出發(fā),并兼顧學(xué)習(xí)有困難的和學(xué)有余力的學(xué)生。對(duì)學(xué)習(xí)有困難的學(xué)生,要特別予以關(guān)心,及時(shí)采取有效措施,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,指導(dǎo)他們改進(jìn)學(xué)習(xí)方法。幫助他們解決學(xué)習(xí)中的困難,使他們經(jīng)過努力,能夠達(dá)到大綱中規(guī)定的基本要求,對(duì)學(xué)有余力的學(xué)生,要通過講授選學(xué)內(nèi)容和組織課外活動(dòng)等多種形式,滿足他們的學(xué)習(xí)愿望,發(fā)展他們的數(shù)學(xué)才能。
2、重視改進(jìn)教學(xué)方法,堅(jiān)持啟發(fā)式,反對(duì)注入式。
教師在課前先布置學(xué)生預(yù)習(xí),同時(shí)要指導(dǎo)學(xué)生預(yù)習(xí),提出預(yù)習(xí)要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學(xué)生課前完成,教學(xué)中教師應(yīng)幫助學(xué)生梳理新課知識(shí),指出重點(diǎn)和易錯(cuò)點(diǎn),解答學(xué)生預(yù)習(xí)時(shí)遇到的問題,再設(shè)計(jì)提高題由學(xué)生進(jìn)行嘗試,使學(xué)生在學(xué)習(xí)中體會(huì)成功,調(diào)動(dòng)學(xué)習(xí)積極性,同時(shí)也可激勵(lì)學(xué)生自我編題。努力培養(yǎng)學(xué)生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實(shí)際問題上升為數(shù)學(xué)模型的能力,注意激勵(lì)學(xué)生的創(chuàng)新意識(shí)。
3、 改革作業(yè)結(jié)構(gòu)減輕學(xué)生負(fù)擔(dān)。將學(xué)生按學(xué)習(xí)能力分成幾個(gè)層次,分別布置難、中、淺三個(gè)層次作業(yè),使每類學(xué)生都能在原有基礎(chǔ)上提高。
4、課后輔導(dǎo)實(shí)行流動(dòng)分層。
5、運(yùn)用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來(lái)不同的教育效果。
6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說(shuō):教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績(jī),發(fā)展學(xué)生的'非智力因素,彌補(bǔ)智力上的不足。
7、開展課題的研究,課外調(diào)查,操作實(shí)踐,帶動(dòng)班級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué),同時(shí)發(fā)展這一部分學(xué)生的特長(zhǎng)。
8、進(jìn)行個(gè)別輔導(dǎo),優(yōu)生提升能力,扎實(shí)打牢基礎(chǔ)知識(shí);對(duì)學(xué)困生,一些關(guān)鍵知識(shí),輔導(dǎo)他們過關(guān),為他們以后的發(fā)展鋪平道路。
9、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣。
四、教學(xué)進(jìn)度
第一章《三角形的證明》13課時(shí)
1.1等腰三角形 4課時(shí)
1.2直角三角形 2課時(shí)
1.3線段的垂直平分線 2課時(shí)
1.4角平分線 2課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 3課時(shí)
第二章《一元一次不等式和一元一次不等式組》 12課時(shí)
2.1 不等關(guān)系 1課時(shí)
2.2 不等式的基本性質(zhì) 1課時(shí)
2.3 不等式的解集 1課時(shí)
2.4 一元一次不等式2課時(shí)
2.5 一元一次不等式與一次函數(shù)2課時(shí)
2.6 一元一次不等式組 2課時(shí)
復(fù)習(xí)小節(jié) 與檢測(cè) 3課時(shí)
第三章《圖形的平移與旋轉(zhuǎn)》 10課時(shí)
3.1圖形的平移 3課時(shí)
3.2圖形的旋轉(zhuǎn) 2 課時(shí)
3.3中心對(duì)稱 1課時(shí)
3.4簡(jiǎn)單的圖形設(shè)計(jì) 1 課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 3課時(shí)
期中考試復(fù)習(xí)2 課時(shí)
第四章《分解因式》7課時(shí)
4.1分解因式1課時(shí)
4.2提公因式法 2課時(shí)
4.3公式法 2課時(shí)
4.4重心 2課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)
第五章《分式與分式方程》 11課時(shí)
5.1認(rèn)識(shí)分式 2課時(shí)
5.2 分式的乘除法 1課時(shí)
5.3分式的加減法 3課時(shí)
5.4分式方程 3課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)
第六章《平行四邊形》 10課時(shí)
4.1平行四邊形的性質(zhì) 2課時(shí)
4.2特殊的平行四邊形的判定 3課時(shí)
4.3三角形的中位線 1課時(shí)
4.4多邊形的內(nèi)角和外角和 2課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)
八年級(jí)數(shù)學(xué)教案全套篇五
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式。
3.難點(diǎn)的突破方法:
方差公式:s=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。
(2)波動(dòng)性可以通過什么方式表現(xiàn)出來(lái)?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法??梢援嬚劬€圖方法來(lái)反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來(lái)描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋,波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
1.教材p125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計(jì)算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫折線法。
(4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的'局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。
2.教材p154例1的設(shè)計(jì)意圖:
(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
教材xxx例x在分析過程中應(yīng)抓住以下幾點(diǎn):
1.題目中“整齊”的含義是什么?說(shuō)明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄?,這個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。
3.方差怎樣去體現(xiàn)波動(dòng)大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)。
甲:9、10、11、12、7、13、10、8、12、8;。
乙:8、13、12、11、10、12、7、7、9、11;。
問:(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?
(2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?
測(cè)試次數(shù)12345。
段巍1314131213。
金志強(qiáng)1013161412。
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊。
的成績(jī)比xx的成績(jī)要穩(wěn)定。
略。
八年級(jí)數(shù)學(xué)教案全套篇六
(一)、知識(shí)與技能:
(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
(二)、過程與方法:
(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
(2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
(3)通過對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。
(三)、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)。
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過程。
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入。
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2.67×132+25×2.67+7×2.67=;
(3)992–1=。
設(shè)計(jì)意圖:
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題。
p165的探究(略);
2.看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知。
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根據(jù)上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一組的整式乘法的計(jì)算上,學(xué)生通過對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知。
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)=a3-a。
a3-a=a(a+1)(a-1)。
在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
八年級(jí)數(shù)學(xué)教案全套篇七
1.理解分式的基本性質(zhì).
2.會(huì)用分式的基本性質(zhì)將分式變形.
二、重點(diǎn)、難點(diǎn)。
1.重點(diǎn):理解分式的基本性質(zhì).
2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點(diǎn)與突破方法。
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、例、習(xí)題的意圖分析。
1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
四、課堂引入。
1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說(shuō)出與之間變形的過程,與之間變形的過程,并說(shuō)出變形依據(jù)?
3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
五、例題講解。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
(補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
[分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.
解:=,=,=,=,=。
六、隨堂練習(xí)。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.約分:
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
七、課后練習(xí)。
1.判斷下列約分是否正確:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
八年級(jí)數(shù)學(xué)教案全套篇八
在推理判斷中得出同底數(shù)冪乘法的運(yùn)算法則,并掌握“法則”的應(yīng)用.2.過程與方法。
在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強(qiáng)學(xué)習(xí)信心.重、難點(diǎn)與關(guān)鍵。
1.重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.2.難點(diǎn):同底數(shù)冪的乘法的法則的應(yīng)用.
一、創(chuàng)設(shè)情境,故事引入【情境導(dǎo)入】。
力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個(gè)壯舉,累死了,他的左眼變成了太陽(yáng),右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.
八年級(jí)數(shù)學(xué)教案全套篇九
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系。
2.內(nèi)容解析。
本節(jié)課的教學(xué)重點(diǎn):三角形中的相關(guān)概念和三角形三邊關(guān)系。
本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系。
二、目標(biāo)和目標(biāo)解析。
1.教學(xué)目標(biāo)。
(1)了解三角形中的相關(guān)概念,學(xué)會(huì)用符號(hào)語(yǔ)言表示三角形中的對(duì)應(yīng)元素。
(2)理解并且靈活應(yīng)用三角形三邊關(guān)系。
2.教學(xué)目標(biāo)解析。
(1)結(jié)合具體圖形,識(shí)三角形的概念及其基本元素。
(2)會(huì)用符號(hào)、字母表示三角形中的相關(guān)元素,并會(huì)按邊對(duì)三角形進(jìn)行分類。
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來(lái)解決問題。
三、教學(xué)問題診斷分析。
四、教學(xué)過程設(shè)計(jì)。
1.創(chuàng)設(shè)情境,提出問題。
問題回憶生活中的三角形實(shí)例,結(jié)合你以前對(duì)三角形的了解,請(qǐng)你給三角形下一個(gè)定義。
2.抽象概括,形成概念。
動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫,歸納出三角形的定義。
師生活動(dòng):
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
八年級(jí)數(shù)學(xué)教案全套篇十
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。
2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。
重點(diǎn)與難點(diǎn):
重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。
難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。
疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖。
教具學(xué)具準(zhǔn)備:
提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動(dòng)畫演示。
教學(xué)過程設(shè)計(jì):
1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生試著說(shuō)一說(shuō)每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)。
明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說(shuō)說(shuō)每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過平移形成。
2、課本。
1欣賞課本75頁(yè)圖3—24的圖案,并分析這個(gè)圖案形成過程。
評(píng)注:圖案是密鋪圖案的代表,旨在通過對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說(shuō)明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。
評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對(duì)稱變換得到左上圖和右下圖。
(二)課內(nèi)練習(xí)。
(1)以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。
(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說(shuō)明自己的設(shè)計(jì)意圖。
(三)議一議。
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。
(四)課時(shí)小結(jié)。
本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。
通過今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來(lái)設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)。
進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。
八年級(jí)數(shù)學(xué)教案全套篇十一
正比例函數(shù)的概念。
2、內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。
對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
本節(jié)課主要是通過對(duì)生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。
1、目標(biāo)。
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想。
2、目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對(duì)實(shí)際問題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想。
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的`每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程。
八年級(jí)數(shù)學(xué)教案全套篇十二
1、掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。
2、使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。
3、會(huì)根據(jù)簡(jiǎn)單的條件畫出平行四邊形,并說(shuō)明畫圖的依據(jù)是哪幾個(gè)定理。
1、通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。
2、通過教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力。
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。
通過學(xué)習(xí),體會(huì)幾何證明的方法美。
構(gòu)造逆命題,分析探索證明,啟發(fā)講解。
1、教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用。
2、教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理。
(強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理)。
八年級(jí)數(shù)學(xué)教案全套篇十三
認(rèn)知基礎(chǔ):學(xué)生在七年級(jí)下冊(cè)第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對(duì)變量間互相依存的關(guān)系有了一定的認(rèn)識(shí),但對(duì)于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對(duì)學(xué)生有較高的要求,學(xué)生在理解和運(yùn)用時(shí)會(huì)有一定的難度。
活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在七年級(jí)下冊(cè)《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實(shí)例額,體會(huì)了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識(shí)圖能力和主動(dòng)參與、合作的意識(shí)和初步的觀察、分析、抽象概括的能力。
知識(shí)與技能目標(biāo):
(1)初步掌握函數(shù)概念,能判斷兩個(gè)變量之間的關(guān)系是否可以看作函數(shù)。
(2)根據(jù)兩個(gè)變量之間的關(guān)系式,給定其中一個(gè)變量的值相應(yīng)的會(huì)求出另一個(gè)變量的值。
(3)會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為函數(shù)問題。
過程與方法目標(biāo):
(1)通過函數(shù)概念初步形成利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
(2)經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感態(tài)度與價(jià)值觀目標(biāo):
(1)經(jīng)歷函數(shù)概念的抽象概括過程,體會(huì)函數(shù)的模型思想。
(2)能主動(dòng)從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
八年級(jí)數(shù)學(xué)教案全套篇十四
可化為一元二次方程的分式方程的解法.。
教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn).。
一、新課引入:
1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
2.解可化為一元一次方程的分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?
3、產(chǎn)生增根的原因是什么?.。
二、新課講解:
八年級(jí)數(shù)學(xué)教案全套篇十五
1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問題。
平行四邊形的判定方法及應(yīng)用。
閱讀教材p44至p45。
利用手中的學(xué)具——硬紙板條,通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
(3)你能說(shuō)出你的做法及其道理嗎?
(5)你還能找出其他方法嗎?
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
八年級(jí)數(shù)學(xué)教案全套篇十六
1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
算術(shù)平方根的概念。
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
1、提出問題:(書p68頁(yè)的問題)
你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)
這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
一般地,如果一個(gè)正數(shù)x的平方等于a,即=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說(shuō)出144的算術(shù)平方根是多少嗎?并用等式表示出來(lái).
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習(xí)1、2
怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵(lì)學(xué)生探究。
問題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?
大正方形的邊長(zhǎng)是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個(gè)正數(shù)的算術(shù)平方根
p75習(xí)題13.1活動(dòng)第1、2、3題
八年級(jí)數(shù)學(xué)教案全套篇十七
2、使學(xué)生掌握用平方差公式分解因式。
重點(diǎn):掌握運(yùn)用平方差公式分解因式。
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
創(chuàng)設(shè)問題情境,引入新課。
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的`一種因式分解的方法——公式法。
1、請(qǐng)看乘法公式。
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)。
2、公式講解。
如x2—16。
=(x)2—42。
=(x+4)(x—4)。
9m2—4n2。
=(3m)2—(2n)2。
=(3m+2n)(3m—2n)。
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補(bǔ)充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
教科書練習(xí)。
1、教科書習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級(jí)數(shù)學(xué)教案全套篇十八
學(xué)會(huì)可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解、掌握解分式方程的一般步驟。
去分母法解可化為一元一次方程或一元二次方程的分式方程、驗(yàn)根的方法、
解分式方程的一般步驟。
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程。
3、解方程(學(xué)生板演)。
1、由上述學(xué)生的板演歸納出解分式方程的一般步驟。
(1)去分母:在方程的兩邊都乘以最簡(jiǎn)公分母,化為整式方程;
(2)解這個(gè)整式方程;
2、范例講解。
(學(xué)生嘗試練習(xí)后,教師講評(píng))。
例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):
1、怎樣確定最簡(jiǎn)公分母?(先將各分母因式分解)。
2、解分式方程的步驟、
鞏固練習(xí):p1471t,2t、
課堂小結(jié):解分式方程的一般步驟。
布置作業(yè):見作業(yè)本。
八年級(jí)數(shù)學(xué)教案全套篇一
多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。
二、自主學(xué)習(xí),指向目標(biāo)。
學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書》相應(yīng)部分。
三、合作探究,達(dá)成目標(biāo)。
多邊形的定義及有關(guān)概念。
活動(dòng)一:閱讀教材p19。
小組討論:結(jié)合具體圖形說(shuō)出多邊形的邊、內(nèi)角、外角?
反思小結(jié):多邊形的定義及相關(guān)概念。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
多邊形的對(duì)角線。
活動(dòng)二:(1)十邊形的對(duì)角線有35條。
(2)如果經(jīng)過多邊形的一個(gè)頂點(diǎn)有36條對(duì)角線,這個(gè)多邊形是39邊形。
反思小結(jié):當(dāng)n為已知時(shí),可以直接代入求得對(duì)角線的條數(shù),當(dāng)對(duì)角線條數(shù)已知時(shí),可以化為方程來(lái)求多邊形的邊數(shù)。
小組討論:如何靈活運(yùn)用多邊形對(duì)角線條數(shù)的規(guī)律解題?
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
正多邊形的有關(guān)概念。
活動(dòng)二:閱讀教材p20。
小組討論:判斷一個(gè)多邊形是否是正多邊形的條件?
反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
四、總結(jié)梳理,內(nèi)化目標(biāo)。
本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí)是:
1、多邊形、多邊形的外角,多邊形的對(duì)角線。
2、凸凹多邊形的概念。
五、達(dá)標(biāo)檢測(cè),反思目標(biāo)。
1、下列敘述正確的是(d)。
a、每條邊都相等的多邊形是正多邊形。
c、每個(gè)角都相等的多邊形叫正多邊形。
d、每條邊、每個(gè)角都相等的多邊形叫正多邊形。
2、小學(xué)學(xué)過的下列圖形中不可能是正多邊形的是(d)。
a、三角形b。正方形c。四邊形d。梯形。
3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補(bǔ)角關(guān)系。
4、已知一個(gè)四邊形的四個(gè)內(nèi)角的比為1∶2∶3∶4,求這個(gè)四邊形的各個(gè)內(nèi)角的度數(shù)。
八年級(jí)數(shù)學(xué)教案全套篇二
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式。
問題農(nóng)科院計(jì)劃為某地選擇合適的甜玉米種子.選擇種子時(shí),甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關(guān)心的問題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗(yàn)田進(jìn)行試驗(yàn),得到各試驗(yàn)田每公頃的產(chǎn)量(單位:t)如表所示。
根據(jù)這些數(shù)據(jù)估計(jì),農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
來(lái)衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來(lái)衡量一批數(shù)據(jù)的波動(dòng)大小。
在樣本容量相同的情況下,方差越大,說(shuō)明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。
(1)研究離散程度可用。
(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的.波動(dòng)大小。
(3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)。
(4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的。
例題:在一次芭蕾舞比賽中,甲乙兩個(gè)芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
甲163164164165165166166167。
乙163165165166166167168168。
哪個(gè)芭蕾舞團(tuán)的女演員的身高比較整齊?
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4。
乙:9、5、7、8、7、6、8、6、7、7。
經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但s,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是()。
甲:0、1、0、2、2、0、3、1、2、4。
乙:2、3、1、2、0、2、1、1、2、1。
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
八年級(jí)數(shù)學(xué)教案全套篇三
教學(xué)目標(biāo):
〔知識(shí)與技能〕。
1.在生活實(shí)例中認(rèn)識(shí)軸對(duì)稱圖.
2.分析軸對(duì)稱圖形,理解軸對(duì)稱的概念.軸對(duì)稱圖形的概念。
〔過程與方法〕。
2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說(shuō)理和進(jìn)行簡(jiǎn)單推理的能力。
〔情感、態(tài)度與價(jià)值觀〕。
辯證唯物主義觀點(diǎn)。
教學(xué)重點(diǎn):.
理解軸對(duì)稱的概念。
教學(xué)難點(diǎn)。
能夠識(shí)別軸對(duì)稱圖形并找出它的對(duì)稱軸.
教具準(zhǔn)備:三角尺。
教學(xué)過程。
一.創(chuàng)設(shè)情境,引入新課。
1.舉實(shí)例說(shuō)明對(duì)稱的重要性和生活充滿著對(duì)稱。
2.對(duì)稱給我們帶來(lái)多少美的感受!初步掌握對(duì)稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.
3.軸對(duì)稱是對(duì)稱中重要的一種,讓我們一起走進(jìn)軸對(duì)稱世界,探索它的秘密吧!
二.導(dǎo)入新課。
1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.
強(qiáng)調(diào):對(duì)稱現(xiàn)象無(wú)處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對(duì)稱的例子.
練習(xí):從學(xué)生生活周圍的事物中來(lái)找一些具有對(duì)稱特征的例子.
3.如果一個(gè)圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸.我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)?對(duì)稱.
4.動(dòng)手操作:取一張質(zhì)地較硬的紙,將紙對(duì)折,并用小刀在紙的中央隨意。
刻出一個(gè)圖案,將紙打開后鋪平,你得到兩個(gè)成軸對(duì)稱的圖案了嗎?
歸納小結(jié):由此我們進(jìn)一步了解了軸對(duì)稱圖形的特征:一個(gè)圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.
5.練習(xí):你能找出它們的對(duì)稱軸嗎?分小組討論.
思考:大家想一想,你發(fā)現(xiàn)了什么?
小結(jié)得出:.像這樣,?把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱,?這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn).
三.隨堂練習(xí)。
1、課本60練習(xí)1、2。
四.課時(shí)小結(jié)。
分了軸對(duì)稱圖形和兩個(gè)圖形成軸對(duì)稱.
五.課后作業(yè)。
習(xí)題13.1.1、2、6題.
六.教后記。
八年級(jí)數(shù)學(xué)教案全套篇四
在教學(xué)中努力推進(jìn)九年義務(wù)教育,落實(shí)新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。
通過數(shù)學(xué)課的教學(xué),使學(xué)生切實(shí)學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所必需的數(shù)學(xué)基本知識(shí)和基本技能;努力培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力,以及分析問題和解決問題的能力。
二、學(xué)情分析
八年級(jí)是初中學(xué)習(xí)過程中的關(guān)鍵時(shí)期,學(xué)生基礎(chǔ)的好壞,直接影響到將來(lái)是否能升學(xué)。優(yōu)生不多,思想不夠活躍,有少數(shù)學(xué)生不上進(jìn),思維跟不上。要在本期獲得理想成績(jī),老師和學(xué)生都要付出努力,充分發(fā)揮學(xué)生是學(xué)習(xí)的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
三、本學(xué)期教學(xué)內(nèi)容分析
本學(xué)期教學(xué)內(nèi)容共計(jì)六章。
第一章《三角形的證明》
本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進(jìn)一步體會(huì)證明的必要性。
第二章《一元一次不等式和一元一次不等式組》
本章通過具體實(shí)例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應(yīng)用;通過具體實(shí)例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應(yīng)。
第三章《圖形的平移與旋轉(zhuǎn)》
本章將在小學(xué)學(xué)習(xí)的基礎(chǔ)上進(jìn)一步認(rèn)識(shí)平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認(rèn)識(shí)并欣賞平移,中心對(duì)稱在自然界和現(xiàn)實(shí)生活中的應(yīng)用。
第四章《分解因式》
本章通過具體實(shí)例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實(shí)質(zhì),最后學(xué)習(xí)分解因式的幾種基本方法。
第五章《分式與分式方程》
本章通過分?jǐn)?shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運(yùn)算法則,并在此基礎(chǔ)上學(xué)習(xí)分式的化簡(jiǎn)求值、解分式方程及列分式方程解應(yīng)用題,能解決簡(jiǎn)單的實(shí)際應(yīng)用問題。
第六章《平行四邊形》
本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實(shí)驗(yàn)等幾何發(fā)現(xiàn)之旅,享受證明之美。
四、主要措施
1、面向全體學(xué)生。
由于學(xué)生在知識(shí)、技能方面的發(fā)展和興趣、特長(zhǎng)等不盡相同,所以要因材施教。在組織教學(xué)時(shí),應(yīng)從大多數(shù)學(xué)生的實(shí)際出發(fā),并兼顧學(xué)習(xí)有困難的和學(xué)有余力的學(xué)生。對(duì)學(xué)習(xí)有困難的學(xué)生,要特別予以關(guān)心,及時(shí)采取有效措施,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,指導(dǎo)他們改進(jìn)學(xué)習(xí)方法。幫助他們解決學(xué)習(xí)中的困難,使他們經(jīng)過努力,能夠達(dá)到大綱中規(guī)定的基本要求,對(duì)學(xué)有余力的學(xué)生,要通過講授選學(xué)內(nèi)容和組織課外活動(dòng)等多種形式,滿足他們的學(xué)習(xí)愿望,發(fā)展他們的數(shù)學(xué)才能。
2、重視改進(jìn)教學(xué)方法,堅(jiān)持啟發(fā)式,反對(duì)注入式。
教師在課前先布置學(xué)生預(yù)習(xí),同時(shí)要指導(dǎo)學(xué)生預(yù)習(xí),提出預(yù)習(xí)要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學(xué)生課前完成,教學(xué)中教師應(yīng)幫助學(xué)生梳理新課知識(shí),指出重點(diǎn)和易錯(cuò)點(diǎn),解答學(xué)生預(yù)習(xí)時(shí)遇到的問題,再設(shè)計(jì)提高題由學(xué)生進(jìn)行嘗試,使學(xué)生在學(xué)習(xí)中體會(huì)成功,調(diào)動(dòng)學(xué)習(xí)積極性,同時(shí)也可激勵(lì)學(xué)生自我編題。努力培養(yǎng)學(xué)生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實(shí)際問題上升為數(shù)學(xué)模型的能力,注意激勵(lì)學(xué)生的創(chuàng)新意識(shí)。
3、 改革作業(yè)結(jié)構(gòu)減輕學(xué)生負(fù)擔(dān)。將學(xué)生按學(xué)習(xí)能力分成幾個(gè)層次,分別布置難、中、淺三個(gè)層次作業(yè),使每類學(xué)生都能在原有基礎(chǔ)上提高。
4、課后輔導(dǎo)實(shí)行流動(dòng)分層。
5、運(yùn)用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來(lái)不同的教育效果。
6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說(shuō):教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績(jī),發(fā)展學(xué)生的'非智力因素,彌補(bǔ)智力上的不足。
7、開展課題的研究,課外調(diào)查,操作實(shí)踐,帶動(dòng)班級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué),同時(shí)發(fā)展這一部分學(xué)生的特長(zhǎng)。
8、進(jìn)行個(gè)別輔導(dǎo),優(yōu)生提升能力,扎實(shí)打牢基礎(chǔ)知識(shí);對(duì)學(xué)困生,一些關(guān)鍵知識(shí),輔導(dǎo)他們過關(guān),為他們以后的發(fā)展鋪平道路。
9、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣。
四、教學(xué)進(jìn)度
第一章《三角形的證明》13課時(shí)
1.1等腰三角形 4課時(shí)
1.2直角三角形 2課時(shí)
1.3線段的垂直平分線 2課時(shí)
1.4角平分線 2課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 3課時(shí)
第二章《一元一次不等式和一元一次不等式組》 12課時(shí)
2.1 不等關(guān)系 1課時(shí)
2.2 不等式的基本性質(zhì) 1課時(shí)
2.3 不等式的解集 1課時(shí)
2.4 一元一次不等式2課時(shí)
2.5 一元一次不等式與一次函數(shù)2課時(shí)
2.6 一元一次不等式組 2課時(shí)
復(fù)習(xí)小節(jié) 與檢測(cè) 3課時(shí)
第三章《圖形的平移與旋轉(zhuǎn)》 10課時(shí)
3.1圖形的平移 3課時(shí)
3.2圖形的旋轉(zhuǎn) 2 課時(shí)
3.3中心對(duì)稱 1課時(shí)
3.4簡(jiǎn)單的圖形設(shè)計(jì) 1 課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 3課時(shí)
期中考試復(fù)習(xí)2 課時(shí)
第四章《分解因式》7課時(shí)
4.1分解因式1課時(shí)
4.2提公因式法 2課時(shí)
4.3公式法 2課時(shí)
4.4重心 2課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)
第五章《分式與分式方程》 11課時(shí)
5.1認(rèn)識(shí)分式 2課時(shí)
5.2 分式的乘除法 1課時(shí)
5.3分式的加減法 3課時(shí)
5.4分式方程 3課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)
第六章《平行四邊形》 10課時(shí)
4.1平行四邊形的性質(zhì) 2課時(shí)
4.2特殊的平行四邊形的判定 3課時(shí)
4.3三角形的中位線 1課時(shí)
4.4多邊形的內(nèi)角和外角和 2課時(shí)
復(fù)習(xí)小節(jié)與檢測(cè) 2課時(shí)
八年級(jí)數(shù)學(xué)教案全套篇五
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式。
3.難點(diǎn)的突破方法:
方差公式:s=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。
(2)波動(dòng)性可以通過什么方式表現(xiàn)出來(lái)?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法??梢援嬚劬€圖方法來(lái)反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來(lái)描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋,波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
1.教材p125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計(jì)算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫折線法。
(4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的'局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。
2.教材p154例1的設(shè)計(jì)意圖:
(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
教材xxx例x在分析過程中應(yīng)抓住以下幾點(diǎn):
1.題目中“整齊”的含義是什么?說(shuō)明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄?,這個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。
3.方差怎樣去體現(xiàn)波動(dòng)大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)。
甲:9、10、11、12、7、13、10、8、12、8;。
乙:8、13、12、11、10、12、7、7、9、11;。
問:(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?
(2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?
測(cè)試次數(shù)12345。
段巍1314131213。
金志強(qiáng)1013161412。
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊。
的成績(jī)比xx的成績(jī)要穩(wěn)定。
略。
八年級(jí)數(shù)學(xué)教案全套篇六
(一)、知識(shí)與技能:
(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
(二)、過程與方法:
(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
(2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
(3)通過對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。
(三)、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)。
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過程。
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入。
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2.67×132+25×2.67+7×2.67=;
(3)992–1=。
設(shè)計(jì)意圖:
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題。
p165的探究(略);
2.看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知。
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根據(jù)上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一組的整式乘法的計(jì)算上,學(xué)生通過對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知。
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)=a3-a。
a3-a=a(a+1)(a-1)。
在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
八年級(jí)數(shù)學(xué)教案全套篇七
1.理解分式的基本性質(zhì).
2.會(huì)用分式的基本性質(zhì)將分式變形.
二、重點(diǎn)、難點(diǎn)。
1.重點(diǎn):理解分式的基本性質(zhì).
2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點(diǎn)與突破方法。
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、例、習(xí)題的意圖分析。
1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
四、課堂引入。
1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說(shuō)出與之間變形的過程,與之間變形的過程,并說(shuō)出變形依據(jù)?
3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
五、例題講解。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
(補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
[分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.
解:=,=,=,=,=。
六、隨堂練習(xí)。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.約分:
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
七、課后練習(xí)。
1.判斷下列約分是否正確:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
八年級(jí)數(shù)學(xué)教案全套篇八
在推理判斷中得出同底數(shù)冪乘法的運(yùn)算法則,并掌握“法則”的應(yīng)用.2.過程與方法。
在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強(qiáng)學(xué)習(xí)信心.重、難點(diǎn)與關(guān)鍵。
1.重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.2.難點(diǎn):同底數(shù)冪的乘法的法則的應(yīng)用.
一、創(chuàng)設(shè)情境,故事引入【情境導(dǎo)入】。
力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個(gè)壯舉,累死了,他的左眼變成了太陽(yáng),右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.
八年級(jí)數(shù)學(xué)教案全套篇九
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系。
2.內(nèi)容解析。
本節(jié)課的教學(xué)重點(diǎn):三角形中的相關(guān)概念和三角形三邊關(guān)系。
本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系。
二、目標(biāo)和目標(biāo)解析。
1.教學(xué)目標(biāo)。
(1)了解三角形中的相關(guān)概念,學(xué)會(huì)用符號(hào)語(yǔ)言表示三角形中的對(duì)應(yīng)元素。
(2)理解并且靈活應(yīng)用三角形三邊關(guān)系。
2.教學(xué)目標(biāo)解析。
(1)結(jié)合具體圖形,識(shí)三角形的概念及其基本元素。
(2)會(huì)用符號(hào)、字母表示三角形中的相關(guān)元素,并會(huì)按邊對(duì)三角形進(jìn)行分類。
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來(lái)解決問題。
三、教學(xué)問題診斷分析。
四、教學(xué)過程設(shè)計(jì)。
1.創(chuàng)設(shè)情境,提出問題。
問題回憶生活中的三角形實(shí)例,結(jié)合你以前對(duì)三角形的了解,請(qǐng)你給三角形下一個(gè)定義。
2.抽象概括,形成概念。
動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫,歸納出三角形的定義。
師生活動(dòng):
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
八年級(jí)數(shù)學(xué)教案全套篇十
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。
2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。
重點(diǎn)與難點(diǎn):
重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。
難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。
疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖。
教具學(xué)具準(zhǔn)備:
提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動(dòng)畫演示。
教學(xué)過程設(shè)計(jì):
1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生試著說(shuō)一說(shuō)每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)。
明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說(shuō)說(shuō)每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過平移形成。
2、課本。
1欣賞課本75頁(yè)圖3—24的圖案,并分析這個(gè)圖案形成過程。
評(píng)注:圖案是密鋪圖案的代表,旨在通過對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說(shuō)明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。
評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對(duì)稱變換得到左上圖和右下圖。
(二)課內(nèi)練習(xí)。
(1)以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。
(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說(shuō)明自己的設(shè)計(jì)意圖。
(三)議一議。
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。
(四)課時(shí)小結(jié)。
本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。
通過今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來(lái)設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)。
進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。
八年級(jí)數(shù)學(xué)教案全套篇十一
正比例函數(shù)的概念。
2、內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。
對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
本節(jié)課主要是通過對(duì)生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。
1、目標(biāo)。
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想。
2、目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對(duì)實(shí)際問題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想。
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的`每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程。
八年級(jí)數(shù)學(xué)教案全套篇十二
1、掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。
2、使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。
3、會(huì)根據(jù)簡(jiǎn)單的條件畫出平行四邊形,并說(shuō)明畫圖的依據(jù)是哪幾個(gè)定理。
1、通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。
2、通過教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力。
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。
通過學(xué)習(xí),體會(huì)幾何證明的方法美。
構(gòu)造逆命題,分析探索證明,啟發(fā)講解。
1、教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用。
2、教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理。
(強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理)。
八年級(jí)數(shù)學(xué)教案全套篇十三
認(rèn)知基礎(chǔ):學(xué)生在七年級(jí)下冊(cè)第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對(duì)變量間互相依存的關(guān)系有了一定的認(rèn)識(shí),但對(duì)于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對(duì)學(xué)生有較高的要求,學(xué)生在理解和運(yùn)用時(shí)會(huì)有一定的難度。
活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在七年級(jí)下冊(cè)《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實(shí)例額,體會(huì)了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識(shí)圖能力和主動(dòng)參與、合作的意識(shí)和初步的觀察、分析、抽象概括的能力。
知識(shí)與技能目標(biāo):
(1)初步掌握函數(shù)概念,能判斷兩個(gè)變量之間的關(guān)系是否可以看作函數(shù)。
(2)根據(jù)兩個(gè)變量之間的關(guān)系式,給定其中一個(gè)變量的值相應(yīng)的會(huì)求出另一個(gè)變量的值。
(3)會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為函數(shù)問題。
過程與方法目標(biāo):
(1)通過函數(shù)概念初步形成利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
(2)經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感態(tài)度與價(jià)值觀目標(biāo):
(1)經(jīng)歷函數(shù)概念的抽象概括過程,體會(huì)函數(shù)的模型思想。
(2)能主動(dòng)從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
八年級(jí)數(shù)學(xué)教案全套篇十四
可化為一元二次方程的分式方程的解法.。
教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn).。
一、新課引入:
1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
2.解可化為一元一次方程的分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?
3、產(chǎn)生增根的原因是什么?.。
二、新課講解:
八年級(jí)數(shù)學(xué)教案全套篇十五
1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問題。
平行四邊形的判定方法及應(yīng)用。
閱讀教材p44至p45。
利用手中的學(xué)具——硬紙板條,通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
(3)你能說(shuō)出你的做法及其道理嗎?
(5)你還能找出其他方法嗎?
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
八年級(jí)數(shù)學(xué)教案全套篇十六
1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
算術(shù)平方根的概念。
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
1、提出問題:(書p68頁(yè)的問題)
你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)
這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
一般地,如果一個(gè)正數(shù)x的平方等于a,即=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說(shuō)出144的算術(shù)平方根是多少嗎?并用等式表示出來(lái).
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習(xí)1、2
怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵(lì)學(xué)生探究。
問題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?
大正方形的邊長(zhǎng)是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個(gè)正數(shù)的算術(shù)平方根
p75習(xí)題13.1活動(dòng)第1、2、3題
八年級(jí)數(shù)學(xué)教案全套篇十七
2、使學(xué)生掌握用平方差公式分解因式。
重點(diǎn):掌握運(yùn)用平方差公式分解因式。
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
創(chuàng)設(shè)問題情境,引入新課。
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的`一種因式分解的方法——公式法。
1、請(qǐng)看乘法公式。
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)。
2、公式講解。
如x2—16。
=(x)2—42。
=(x+4)(x—4)。
9m2—4n2。
=(3m)2—(2n)2。
=(3m+2n)(3m—2n)。
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補(bǔ)充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
教科書練習(xí)。
1、教科書習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級(jí)數(shù)學(xué)教案全套篇十八
學(xué)會(huì)可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解、掌握解分式方程的一般步驟。
去分母法解可化為一元一次方程或一元二次方程的分式方程、驗(yàn)根的方法、
解分式方程的一般步驟。
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程。
3、解方程(學(xué)生板演)。
1、由上述學(xué)生的板演歸納出解分式方程的一般步驟。
(1)去分母:在方程的兩邊都乘以最簡(jiǎn)公分母,化為整式方程;
(2)解這個(gè)整式方程;
2、范例講解。
(學(xué)生嘗試練習(xí)后,教師講評(píng))。
例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):
1、怎樣確定最簡(jiǎn)公分母?(先將各分母因式分解)。
2、解分式方程的步驟、
鞏固練習(xí):p1471t,2t、
課堂小結(jié):解分式方程的一般步驟。
布置作業(yè):見作業(yè)本。