教案是一種詳細而系統(tǒng)地規(guī)劃教學活動的書面材料,它包括教學目標、教學內容、教學方法、教學步驟等內容,有助于教師組織教學活動,提高教育教學質量?,F在是時候準備一份教案了。教案可以提供教學流程和指導,讓教師更好地安排教學時間和教學內容。教案有助于提高課堂教學效果,并幫助學生更好地理解和掌握知識。教案是教學的基礎,也是教師展示教學設計能力的重要材料。教案的內容要緊密結合教材,符合課堂實際需要。下面是一些精選的教案范本,供大家參考和借鑒。
高中數學不等式教案篇一
了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質。
【自學質疑】
漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。
2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
3.經過兩點 的雙曲線的標準方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經過點 的雙曲線的方程為
【例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。
2.已知橢圓具有性質:若 是橢圓 上關于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關的定值,試對雙曲線 寫出具有類似特性的性質,并加以證明。
3.設雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。
【矯正鞏固】
1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。
2.與雙曲線 有共同的漸近線,且經過點 的雙曲線的一個焦點到一條漸近線的距離是 。
3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是
4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。
【遷移應用】
2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則
5. 設 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .
高中數學不等式教案篇二
三角函數的誘導公式是普通高中課程標準實驗教科書(人教b版)數學必修四,第一章第二節(jié)內容,其主要內容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發(fā)現他們與單位圓的交點坐標之間關系,進而發(fā)現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法。
通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發(fā)現他們與單位圓的交點坐標之間關系,進而發(fā)現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內容在三角函數中占有非常重要的地位.
以學生為主題,以發(fā)現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數化為銳角三角函數。
誘導公式(三)的推導及應用。
誘導公式的應用。
多媒體。
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
已知 由
可知
而 (課件演示,學生發(fā)現)
所以
于是可得: (三)
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數式的值或化簡三角函數式。
設計意圖:結合學過的公式(一)(二),發(fā)現特點,總結公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發(fā)現新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)
例3:求下列各三角函數值:
(1)
(2)
(3)
(4)
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數轉化為銳角三角函數,體現轉化化歸,數形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設計,注重細節(jié)的東西,語速需要改正
3.進一步的學習網頁制作,讓你的網頁更加的完善,學生更容易操作
5.上課的生動化,形象化需要加強
1.評議者:網絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數學時,最好值有個側重點;網絡設計上,網頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經驗。
4.評議者:引導學生通過網絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調相對平緩,總結時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 4)給學生答案,這個網頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規(guī)范化的推理
高中數學不等式教案篇三
了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質。
漸近線方程是,離心率,若點是雙曲線上的點,則,。
2、又曲線的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
3、經過兩點的雙曲線的標準方程是。
4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。
5、與雙曲線有公共的漸近線,且經過點的雙曲線的方程為
1、雙曲線的離心率等于,且與橢圓有公共焦點,求該雙曲線的方程。
2、已知橢圓具有性質:若是橢圓上關于原點對稱的兩個點,點是橢圓上任意一點,當直線的斜率都存在,并記為時,那么之積是與點位置無關的定值,試對雙曲線寫出具有類似特性的性質,并加以證明。
3、設雙曲線的半焦距為,直線過兩點,已知原點到直線的距離為,求雙曲線的離心率。
1、雙曲線上一點到一個焦點的距離為,則它到另一個焦點的距離為。
2、與雙曲線有共同的漸近線,且經過點的雙曲線的一個焦點到一條漸近線的距離是。
3、若雙曲線上一點到它的右焦點的距離是,則點到軸的距離是
4、過雙曲線的左焦點的直線交雙曲線于兩點,若。則這樣的'直線一共有條。
1、已知雙曲線的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率
2、已知雙曲線的焦點為,點在雙曲線上,且,則點到軸的距離為。
3、雙曲線的焦距為
4、已知雙曲線的一個頂點到它的一條漸近線的距離為,則
5、設是等腰三角形,,則以為焦點且過點的雙曲線的離心率為。
高中數學不等式教案篇四
掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
向量的性質及相關知識的綜合應用。
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的`有關性質解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數學建模的思想,切實培養(yǎng)分析和解決問題的能力。
高中數學不等式教案篇五
1.在九年義務教育基礎上,使學生進一步學習并掌握職業(yè)崗位和生活中所必要的數學基礎知識。2.培養(yǎng)學生的計算技能、計算工具使用技能和數據處理技能,培養(yǎng)學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。
本課程的教學內容由基礎模塊、職業(yè)模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業(yè)學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業(yè)模塊是適應學生學習相關專業(yè)需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)
計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。
數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)
第2單元不等式(8學時)
第3單元函數(12學時)
第4單元指數函數與對數函數(12學時)
第5單元三角函數(18學時)
第6單元數列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第9單元立體幾何(14學時)
第10單元概率與統(tǒng)計初步(16學時)
2.職業(yè)模塊
第1單元三角計算及其應用(16學時)
第2單元坐標變換與參數方程(12學時)
第3單元復數及其應用(10學時)
高中數學不等式教案篇六
知識與技能。
在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數特征,由圓的一般方程確定圓的.圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
過程與方法。
通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發(fā)現及分析解決問題的實際能力得到提高。
情感態(tài)度與價值觀。
滲透數形結合、化歸與轉化等數學思想方法,提高學生的整體素質,激勵學生創(chuàng)新,勇于探索。
重點。
掌握圓的一般方程,以及用待定系數法求圓的一般方程。
難點。
二元二次方程與圓的一般方程及標準圓方程的關系。
(一)復習舊知,引出課題。
1、復習圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數學不等式教案篇七
:計算機
:啟發(fā)引導法,討論法
下面給出教學實施過程設計的簡要思路:
(一)引入的設計
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.
肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:
問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?
啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內容教學的設計
學生或獨立研究,或合作研究,教師巡視指導.
經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
綜合兩種情況,我們得出如下結論:
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結論可以表述如下:
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評價不同思路,達成共識:
(1)當 時,方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
(2)當 時,由于 、 不同時為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結論:
為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.
(三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計
略
高中數學不等式教案篇八
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標。
(1)經歷由幾何圖形抽象出基本不等式的過程;。
(2)體驗數形結合思想。
3、情感、態(tài)度和價值觀目標。
(1)感悟數學的發(fā)展過程,學會用數學的眼光觀察、分析事物;。
(2)體會多角度探索、解決問題。
高中數學不等式教案篇九
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3.情感.態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
(一)創(chuàng)設情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學?!?、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內容。
設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;(2)我國的小河流.讓學生充分發(fā)表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
高一(4)班的一位同學,那么a,b與集合a分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合a的元素,就說a屬于集合a,記作a?a.
如果a不是集合a的元素,就說a不屬于集合a,記作a?a.
(2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關系分別是什么?請用數學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1a組第1題.
6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業(yè)
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1.課后書面作業(yè):第13頁習題1.1a組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
高中數學不等式教案篇十
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
兩角差的余弦公式。
用-b代替b看看有什么結果?
高中數學不等式教案篇十一
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
難點:識別三視圖所表示的空間幾何體。
觀察、動手實踐、討論、類比。
(一)創(chuàng)設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本p20習題1.2[a組]1。
高中數學不等式教案篇十二
教法與學法:
1.教學理念:“人人學有用的數學”
2.教學方法:觀察法、引導發(fā)現法、討論法.。
3.教學手段:多媒體應用教學。
4.學法指導:嘗試,猜想,歸納,總結。
根據《數學課程標準》的要求,教材和學生的特點,我制定了以下四個教學環(huán)節(jié)。
下面我將具體的教學過程闡述一下:
一、創(chuàng)設情境,導入新課。
上課伊始,我將用一個公園買門票如何才劃算的例子導入課題。
(此處學生是很容易得出買30張門票需要4x30=120(元),買27張門票需要5x27=135(元),由于120〈135,所以買30張門票比買27張還要劃算。由此建立了一個數與數之間的不等關系式)。
緊接著進一步提問:若人數是x時,又當如何買票劃算?
二、探求新知,講授新課。
引例列出了數與數之間的不等關系和含有未知量1205x的不等關系。那么在不等式概念提出之前,先讓學生回顧等式的概念,“類比”等式的概念,嘗試著去總結歸納出不等式的概念。使學生從一個低起點,通過獲得成功的體驗和克服困難的經歷,增進應用數學的自信心,為下面的學習調動了積極。
接下來我用一組例題來鞏固一下對不等式概念的認知,把表示不等量關系的常用關鍵詞提出。
(1)a是負數;
(2)a是非負數;
(3)a與b的和小于5;
(4)x與2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3。
關鍵詞:非負數,非正數,不大于,不小于,不超過,至少。
難點突破:通過上面三組算式,學生已經嘗試著歸納出不等式的三條基本性質了。不等式性質3是本節(jié)的難點。在不等式性質3用數探討出以后,換一個角度讓學生想一想,是否能在數軸上任取兩個點,用相反數的相關知識挖掘一下,乘以或除以一個負數時,任意兩個數比較是否性質3都成立。通過“數形結合”的思想,使數的取值從特殊化到一般化,從對具體數的感知完成到字母代替數的升華。讓學生用實例對一些數學猜想作出檢驗,從而增加猜想的可信程度。同時,讓學生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
反饋練習:用一個小練習鞏固三條性質。
如果ab,那么。
(1)a-3b-3(2)2a2b(3)-3a-3b。
提出疑問,我們討論性質2,3是好象遺忘了一個數0。
引出讓學生歸納,等式與不等式的區(qū)別與聯系。
三、拓展訓練。
根據不等式基本性質,將下列不等式化為“”或“”的形式。
再次回到開頭的門票問題,讓學生解出相應的x的取值范圍。
四、小結。
1.新知識。
2.與舊知識的聯系。
五、作業(yè)的布置。
以上是我對這節(jié)課的教學的看法,希望各位專家指正。謝謝!
“讓學生主動參與數學教學的全過程,真正成為學習的主人”
高中數學不等式教案篇十三
基本性質1:不等式兩邊同時加或減去同一個整式,不等號方向不變。
基本性質2:不等式兩邊同時乘以(或除以)同一個大于0的整式,不等號方向不變。
基本性質3:不等式兩邊同時乘以(或除以)同一個小于0的整式,不等號方向改變。
高中數學不等式教案篇十四
(4)通過含有絕對值符號的不等式的證明,可培養(yǎng)學生辯證思維的方法和能力,以及嚴謹的治學精神。
教學建議。
一、知識結構。
二、重點、難點分析。
三、教學建議。
(2)課前復習應充分.建議復習:當時。
;
;
為證明例1做準備.。
(4)不等式的證明方法較多,也應放手讓學生去探討.。
(5)用向量加減法的三角形法則記憶不等式及推論.。
教學設計示例。
高中數學不等式教案篇十五
目的:以不等式的等價命題為依據,揭示不等式的常用證明方法之一——比較法,要求學生能教熟練地運用作差、作商比較法證明不等式。
過程:
一、復習:
2.比較法之一(作差法)步驟:作差——變形——判斷——結論。
二、作差法:(p13—14)。
甲乙兩人同時同地沿同一路線走到同一地點,甲有一半時間以速度。
m
行走,另一半時間以速度。
n
行走;有一半路程乙以速度。
m
行走,另一半路。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數學不等式教案篇十六
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數軸上表示簡單不等式的解集.
(二)內容解析。
現實生活中存在大量的相等關系,也存在大量的不等關系.本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數形結合,用數軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.
基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數軸上.
二、目標和目標解析。
(一)教學目標。
1.理解不等式的概念。
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯系。
3.了解解不等式的概念。
4.用數軸來表示簡單不等式的解集。
(二)目標解析。
1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數式.
2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.
4、達成目標4的標志是:用數軸表示不等式的解集是數形結合的又一個重要體現,也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學問題診斷分析。
本節(jié)課實質是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數軸上正確表示不等式的解集.
四、教學支持條件分析。
利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣.
五、教學過程設計。
(一)動畫演示情景激趣。
設計意圖:通過實例創(chuàng)設情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的學習興趣.
(二)立足實際引出新知。
小組討論,合作交流,然后小組反饋交流結果.
最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)。
高中數學不等式教案篇十七
《不等式的基本性質》它是北師大版八年級下冊第一章第二節(jié)的內容。今天我將從教材分析,教學目標,教學重難點,教法學法,教學過程這五個方面談談我對這節(jié)課處理的一些不成熟的看法:
本節(jié)內容不等式,它是刻畫現實世界中量與量之間關系的有效數學模型,在現實生活中有著廣泛的應用,所以對不等式的學習有著重要的實際意義。同時,不等式的基本性質也為學生以后順利學習解一元一次不等式和解一元一次不等式組的有關內容的理論基礎,起到重要的奠基作用。
根據《新課程標準》的要求,教材的`內容兼顧我校八年級學生的特點,我制定了如下教學目標:
知識與技能:
1.感受生活中存在的不等關系,了解不等式的意義。
過程與方法:經歷不等式的基本性質的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經歷由具體實例建立不等式模型的過程,進一步符號感與數學化的能力。
教學重難點:
高中數學不等式教案篇十八
1、使學生熟練掌握一元一次不等式的解法,初步認識一元一次不等式的應用價值;。
3、讓學生在分組活動和班級交流的過程中,積累數學活動的經驗并感受成功的喜悅,從而增強學習數學的自信心。
教學難點。
熟練并準確地解一元一次不等式。
知識重點。
熟練并準確地解一元一次不等式。
教學過程。
(師生活動)設計理念。
你會運用已學知識解這個不等式嗎?請你說說解這個不等式的過程.以學生身邊的事例為背景,突出不等式與現實的聯系,這個問題為契機引入新課,可以激發(fā)學生的學習興趣。
探究新知。
1、在學生充分發(fā)表意見的基礎上,師生共同歸納出這個不等式的解法.教師規(guī)范地板書解的過程.
2、例題.
解下列不等式,并在數軸上表示解集:
(1)x50(2)-4x3。
(3)7-3x10(4)2x-33x+1。
分組活動.先獨立思考,然后請4名學生上來板演,其余同學組內相互交流,作出記錄,最后各組選派代表發(fā)言,點評板演情況.教師作總結講評并示范解題格式.
3、教師提問:從以上的求解過程中,你比較出它與解方程有什么異同?
立解決;還有一些學生雖不能解答,但在老師的引導下也能受到啟發(fā),這比單純的教師講解更能調動學習的積極性.另外,由學生自己來糾錯,可培養(yǎng)他們的批判性思維和語言表達能力.
比較不等式與解方程的異同中滲透著類比思想.
鞏固新知。
1、解下列不等式,并在數軸上表示解集:
(1)(2)-8x10。
2、用不等式表示下列語句并寫出解集:
(1)x的3倍大于或等于1;(2)y的的差不大于-2.
解決問題。
測量一棵樹的樹圍(樹干的周長)可以計算它的樹齡一般規(guī)定以樹干離地面1.5m的地方作為測量部位.某樹栽種時的樹圍為5cm,以后樹圍每年增加約3cm.這棵樹至少生一長多少年,其樹圍才能超過2.4m?讓學生在解決問題的過程中深刻感悟數學來源于實踐,又服務于實踐,以培養(yǎng)他們的數學應用意識。
總結歸納圍繞以下幾個問題:
1、這節(jié)課的主要內容是什么?
2、通過學習,我取得了哪些收獲?
3、還有哪些問題需要注意?
讓學生自己歸納,教師僅做必要的補充和點撥.讓學生自己歸納小結,給學生創(chuàng)造自我評價和自我表現的機會,以達到激發(fā)興趣、鞏固知識的目的。
小結與作業(yè)。
布置作業(yè)。
1、必做題:教科書第134~135頁習題9.1第6題(3)(4)第10題。
2、選做題:教科書第135頁習題9、12題.
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
通過創(chuàng)設與學生實際生活密切聯系的向題情境,并由學生根據自己掌握的知識與經驗列出不等式,探究它的解法,可以激發(fā)學生的學習動力,喚起他們的求知欲望,促使學生動腦、動手、動口,積極參與教學的.整個過程,在教師的指導下,主動地、生動活潑地、富有個性地學習.
新課程理念要求教師向學生提供充分的從事數學活動的機會.本課教學過程中貫穿了嘗試引導示范歸納練習點評等一系列環(huán)節(jié),旨在改變學生的學習方式,將被動的、接受式的學習方式轉變?yōu)閯邮謱嵺`、自主探索和合作交流等方式.教師的組織者、引導者與合作者的角色在這節(jié)課中得到了充分的演繹.教師要尊重學生的個體差異,滿足多樣化學習的需求.對學習確實有困難的學生,要及時給予關心和幫助,鼓勵他們主動參與數學學習活動,嘗試著用自己的方式去解決問題,勇于發(fā)表自己的觀點.除了演好組織者、引導者的角色外,教師還應爭當伯樂和雷鋒,多給學生以贊許、鼓勵、關愛和幫助,讓他們在積極愉悅的氛圍中努力學習.
高中數學不等式教案篇一
了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質。
【自學質疑】
漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。
2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
3.經過兩點 的雙曲線的標準方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經過點 的雙曲線的方程為
【例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。
2.已知橢圓具有性質:若 是橢圓 上關于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關的定值,試對雙曲線 寫出具有類似特性的性質,并加以證明。
3.設雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。
【矯正鞏固】
1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。
2.與雙曲線 有共同的漸近線,且經過點 的雙曲線的一個焦點到一條漸近線的距離是 。
3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是
4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。
【遷移應用】
2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則
5. 設 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .
高中數學不等式教案篇二
三角函數的誘導公式是普通高中課程標準實驗教科書(人教b版)數學必修四,第一章第二節(jié)內容,其主要內容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發(fā)現他們與單位圓的交點坐標之間關系,進而發(fā)現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法。
通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發(fā)現他們與單位圓的交點坐標之間關系,進而發(fā)現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內容在三角函數中占有非常重要的地位.
以學生為主題,以發(fā)現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數化為銳角三角函數。
誘導公式(三)的推導及應用。
誘導公式的應用。
多媒體。
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
已知 由
可知
而 (課件演示,學生發(fā)現)
所以
于是可得: (三)
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數式的值或化簡三角函數式。
設計意圖:結合學過的公式(一)(二),發(fā)現特點,總結公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發(fā)現新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)
例3:求下列各三角函數值:
(1)
(2)
(3)
(4)
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數轉化為銳角三角函數,體現轉化化歸,數形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設計,注重細節(jié)的東西,語速需要改正
3.進一步的學習網頁制作,讓你的網頁更加的完善,學生更容易操作
5.上課的生動化,形象化需要加強
1.評議者:網絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數學時,最好值有個側重點;網絡設計上,網頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經驗。
4.評議者:引導學生通過網絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調相對平緩,總結時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 4)給學生答案,這個網頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規(guī)范化的推理
高中數學不等式教案篇三
了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質。
漸近線方程是,離心率,若點是雙曲線上的點,則,。
2、又曲線的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
3、經過兩點的雙曲線的標準方程是。
4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。
5、與雙曲線有公共的漸近線,且經過點的雙曲線的方程為
1、雙曲線的離心率等于,且與橢圓有公共焦點,求該雙曲線的方程。
2、已知橢圓具有性質:若是橢圓上關于原點對稱的兩個點,點是橢圓上任意一點,當直線的斜率都存在,并記為時,那么之積是與點位置無關的定值,試對雙曲線寫出具有類似特性的性質,并加以證明。
3、設雙曲線的半焦距為,直線過兩點,已知原點到直線的距離為,求雙曲線的離心率。
1、雙曲線上一點到一個焦點的距離為,則它到另一個焦點的距離為。
2、與雙曲線有共同的漸近線,且經過點的雙曲線的一個焦點到一條漸近線的距離是。
3、若雙曲線上一點到它的右焦點的距離是,則點到軸的距離是
4、過雙曲線的左焦點的直線交雙曲線于兩點,若。則這樣的'直線一共有條。
1、已知雙曲線的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率
2、已知雙曲線的焦點為,點在雙曲線上,且,則點到軸的距離為。
3、雙曲線的焦距為
4、已知雙曲線的一個頂點到它的一條漸近線的距離為,則
5、設是等腰三角形,,則以為焦點且過點的雙曲線的離心率為。
高中數學不等式教案篇四
掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
向量的性質及相關知識的綜合應用。
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的`有關性質解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數學建模的思想,切實培養(yǎng)分析和解決問題的能力。
高中數學不等式教案篇五
1.在九年義務教育基礎上,使學生進一步學習并掌握職業(yè)崗位和生活中所必要的數學基礎知識。2.培養(yǎng)學生的計算技能、計算工具使用技能和數據處理技能,培養(yǎng)學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。
本課程的教學內容由基礎模塊、職業(yè)模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業(yè)學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業(yè)模塊是適應學生學習相關專業(yè)需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)
計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。
數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)
第2單元不等式(8學時)
第3單元函數(12學時)
第4單元指數函數與對數函數(12學時)
第5單元三角函數(18學時)
第6單元數列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第9單元立體幾何(14學時)
第10單元概率與統(tǒng)計初步(16學時)
2.職業(yè)模塊
第1單元三角計算及其應用(16學時)
第2單元坐標變換與參數方程(12學時)
第3單元復數及其應用(10學時)
高中數學不等式教案篇六
知識與技能。
在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數特征,由圓的一般方程確定圓的.圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
過程與方法。
通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發(fā)現及分析解決問題的實際能力得到提高。
情感態(tài)度與價值觀。
滲透數形結合、化歸與轉化等數學思想方法,提高學生的整體素質,激勵學生創(chuàng)新,勇于探索。
重點。
掌握圓的一般方程,以及用待定系數法求圓的一般方程。
難點。
二元二次方程與圓的一般方程及標準圓方程的關系。
(一)復習舊知,引出課題。
1、復習圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數學不等式教案篇七
:計算機
:啟發(fā)引導法,討論法
下面給出教學實施過程設計的簡要思路:
(一)引入的設計
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.
肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:
問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?
啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內容教學的設計
學生或獨立研究,或合作研究,教師巡視指導.
經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
綜合兩種情況,我們得出如下結論:
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結論可以表述如下:
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評價不同思路,達成共識:
(1)當 時,方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
(2)當 時,由于 、 不同時為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結論:
為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.
(三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計
略
高中數學不等式教案篇八
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標。
(1)經歷由幾何圖形抽象出基本不等式的過程;。
(2)體驗數形結合思想。
3、情感、態(tài)度和價值觀目標。
(1)感悟數學的發(fā)展過程,學會用數學的眼光觀察、分析事物;。
(2)體會多角度探索、解決問題。
高中數學不等式教案篇九
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3.情感.態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
(一)創(chuàng)設情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學?!?、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內容。
設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;(2)我國的小河流.讓學生充分發(fā)表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
高一(4)班的一位同學,那么a,b與集合a分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合a的元素,就說a屬于集合a,記作a?a.
如果a不是集合a的元素,就說a不屬于集合a,記作a?a.
(2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關系分別是什么?請用數學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1a組第1題.
6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業(yè)
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1.課后書面作業(yè):第13頁習題1.1a組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
高中數學不等式教案篇十
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
兩角差的余弦公式。
用-b代替b看看有什么結果?
高中數學不等式教案篇十一
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
難點:識別三視圖所表示的空間幾何體。
觀察、動手實踐、討論、類比。
(一)創(chuàng)設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本p20習題1.2[a組]1。
高中數學不等式教案篇十二
教法與學法:
1.教學理念:“人人學有用的數學”
2.教學方法:觀察法、引導發(fā)現法、討論法.。
3.教學手段:多媒體應用教學。
4.學法指導:嘗試,猜想,歸納,總結。
根據《數學課程標準》的要求,教材和學生的特點,我制定了以下四個教學環(huán)節(jié)。
下面我將具體的教學過程闡述一下:
一、創(chuàng)設情境,導入新課。
上課伊始,我將用一個公園買門票如何才劃算的例子導入課題。
(此處學生是很容易得出買30張門票需要4x30=120(元),買27張門票需要5x27=135(元),由于120〈135,所以買30張門票比買27張還要劃算。由此建立了一個數與數之間的不等關系式)。
緊接著進一步提問:若人數是x時,又當如何買票劃算?
二、探求新知,講授新課。
引例列出了數與數之間的不等關系和含有未知量1205x的不等關系。那么在不等式概念提出之前,先讓學生回顧等式的概念,“類比”等式的概念,嘗試著去總結歸納出不等式的概念。使學生從一個低起點,通過獲得成功的體驗和克服困難的經歷,增進應用數學的自信心,為下面的學習調動了積極。
接下來我用一組例題來鞏固一下對不等式概念的認知,把表示不等量關系的常用關鍵詞提出。
(1)a是負數;
(2)a是非負數;
(3)a與b的和小于5;
(4)x與2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3。
關鍵詞:非負數,非正數,不大于,不小于,不超過,至少。
難點突破:通過上面三組算式,學生已經嘗試著歸納出不等式的三條基本性質了。不等式性質3是本節(jié)的難點。在不等式性質3用數探討出以后,換一個角度讓學生想一想,是否能在數軸上任取兩個點,用相反數的相關知識挖掘一下,乘以或除以一個負數時,任意兩個數比較是否性質3都成立。通過“數形結合”的思想,使數的取值從特殊化到一般化,從對具體數的感知完成到字母代替數的升華。讓學生用實例對一些數學猜想作出檢驗,從而增加猜想的可信程度。同時,讓學生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
反饋練習:用一個小練習鞏固三條性質。
如果ab,那么。
(1)a-3b-3(2)2a2b(3)-3a-3b。
提出疑問,我們討論性質2,3是好象遺忘了一個數0。
引出讓學生歸納,等式與不等式的區(qū)別與聯系。
三、拓展訓練。
根據不等式基本性質,將下列不等式化為“”或“”的形式。
再次回到開頭的門票問題,讓學生解出相應的x的取值范圍。
四、小結。
1.新知識。
2.與舊知識的聯系。
五、作業(yè)的布置。
以上是我對這節(jié)課的教學的看法,希望各位專家指正。謝謝!
“讓學生主動參與數學教學的全過程,真正成為學習的主人”
高中數學不等式教案篇十三
基本性質1:不等式兩邊同時加或減去同一個整式,不等號方向不變。
基本性質2:不等式兩邊同時乘以(或除以)同一個大于0的整式,不等號方向不變。
基本性質3:不等式兩邊同時乘以(或除以)同一個小于0的整式,不等號方向改變。
高中數學不等式教案篇十四
(4)通過含有絕對值符號的不等式的證明,可培養(yǎng)學生辯證思維的方法和能力,以及嚴謹的治學精神。
教學建議。
一、知識結構。
二、重點、難點分析。
三、教學建議。
(2)課前復習應充分.建議復習:當時。
;
;
為證明例1做準備.。
(4)不等式的證明方法較多,也應放手讓學生去探討.。
(5)用向量加減法的三角形法則記憶不等式及推論.。
教學設計示例。
高中數學不等式教案篇十五
目的:以不等式的等價命題為依據,揭示不等式的常用證明方法之一——比較法,要求學生能教熟練地運用作差、作商比較法證明不等式。
過程:
一、復習:
2.比較法之一(作差法)步驟:作差——變形——判斷——結論。
二、作差法:(p13—14)。
甲乙兩人同時同地沿同一路線走到同一地點,甲有一半時間以速度。
m
行走,另一半時間以速度。
n
行走;有一半路程乙以速度。
m
行走,另一半路。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數學不等式教案篇十六
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數軸上表示簡單不等式的解集.
(二)內容解析。
現實生活中存在大量的相等關系,也存在大量的不等關系.本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數形結合,用數軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.
基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數軸上.
二、目標和目標解析。
(一)教學目標。
1.理解不等式的概念。
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯系。
3.了解解不等式的概念。
4.用數軸來表示簡單不等式的解集。
(二)目標解析。
1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數式.
2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.
4、達成目標4的標志是:用數軸表示不等式的解集是數形結合的又一個重要體現,也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學問題診斷分析。
本節(jié)課實質是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數軸上正確表示不等式的解集.
四、教學支持條件分析。
利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣.
五、教學過程設計。
(一)動畫演示情景激趣。
設計意圖:通過實例創(chuàng)設情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的學習興趣.
(二)立足實際引出新知。
小組討論,合作交流,然后小組反饋交流結果.
最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)。
高中數學不等式教案篇十七
《不等式的基本性質》它是北師大版八年級下冊第一章第二節(jié)的內容。今天我將從教材分析,教學目標,教學重難點,教法學法,教學過程這五個方面談談我對這節(jié)課處理的一些不成熟的看法:
本節(jié)內容不等式,它是刻畫現實世界中量與量之間關系的有效數學模型,在現實生活中有著廣泛的應用,所以對不等式的學習有著重要的實際意義。同時,不等式的基本性質也為學生以后順利學習解一元一次不等式和解一元一次不等式組的有關內容的理論基礎,起到重要的奠基作用。
根據《新課程標準》的要求,教材的`內容兼顧我校八年級學生的特點,我制定了如下教學目標:
知識與技能:
1.感受生活中存在的不等關系,了解不等式的意義。
過程與方法:經歷不等式的基本性質的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經歷由具體實例建立不等式模型的過程,進一步符號感與數學化的能力。
教學重難點:
高中數學不等式教案篇十八
1、使學生熟練掌握一元一次不等式的解法,初步認識一元一次不等式的應用價值;。
3、讓學生在分組活動和班級交流的過程中,積累數學活動的經驗并感受成功的喜悅,從而增強學習數學的自信心。
教學難點。
熟練并準確地解一元一次不等式。
知識重點。
熟練并準確地解一元一次不等式。
教學過程。
(師生活動)設計理念。
你會運用已學知識解這個不等式嗎?請你說說解這個不等式的過程.以學生身邊的事例為背景,突出不等式與現實的聯系,這個問題為契機引入新課,可以激發(fā)學生的學習興趣。
探究新知。
1、在學生充分發(fā)表意見的基礎上,師生共同歸納出這個不等式的解法.教師規(guī)范地板書解的過程.
2、例題.
解下列不等式,并在數軸上表示解集:
(1)x50(2)-4x3。
(3)7-3x10(4)2x-33x+1。
分組活動.先獨立思考,然后請4名學生上來板演,其余同學組內相互交流,作出記錄,最后各組選派代表發(fā)言,點評板演情況.教師作總結講評并示范解題格式.
3、教師提問:從以上的求解過程中,你比較出它與解方程有什么異同?
立解決;還有一些學生雖不能解答,但在老師的引導下也能受到啟發(fā),這比單純的教師講解更能調動學習的積極性.另外,由學生自己來糾錯,可培養(yǎng)他們的批判性思維和語言表達能力.
比較不等式與解方程的異同中滲透著類比思想.
鞏固新知。
1、解下列不等式,并在數軸上表示解集:
(1)(2)-8x10。
2、用不等式表示下列語句并寫出解集:
(1)x的3倍大于或等于1;(2)y的的差不大于-2.
解決問題。
測量一棵樹的樹圍(樹干的周長)可以計算它的樹齡一般規(guī)定以樹干離地面1.5m的地方作為測量部位.某樹栽種時的樹圍為5cm,以后樹圍每年增加約3cm.這棵樹至少生一長多少年,其樹圍才能超過2.4m?讓學生在解決問題的過程中深刻感悟數學來源于實踐,又服務于實踐,以培養(yǎng)他們的數學應用意識。
總結歸納圍繞以下幾個問題:
1、這節(jié)課的主要內容是什么?
2、通過學習,我取得了哪些收獲?
3、還有哪些問題需要注意?
讓學生自己歸納,教師僅做必要的補充和點撥.讓學生自己歸納小結,給學生創(chuàng)造自我評價和自我表現的機會,以達到激發(fā)興趣、鞏固知識的目的。
小結與作業(yè)。
布置作業(yè)。
1、必做題:教科書第134~135頁習題9.1第6題(3)(4)第10題。
2、選做題:教科書第135頁習題9、12題.
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
通過創(chuàng)設與學生實際生活密切聯系的向題情境,并由學生根據自己掌握的知識與經驗列出不等式,探究它的解法,可以激發(fā)學生的學習動力,喚起他們的求知欲望,促使學生動腦、動手、動口,積極參與教學的.整個過程,在教師的指導下,主動地、生動活潑地、富有個性地學習.
新課程理念要求教師向學生提供充分的從事數學活動的機會.本課教學過程中貫穿了嘗試引導示范歸納練習點評等一系列環(huán)節(jié),旨在改變學生的學習方式,將被動的、接受式的學習方式轉變?yōu)閯邮謱嵺`、自主探索和合作交流等方式.教師的組織者、引導者與合作者的角色在這節(jié)課中得到了充分的演繹.教師要尊重學生的個體差異,滿足多樣化學習的需求.對學習確實有困難的學生,要及時給予關心和幫助,鼓勵他們主動參與數學學習活動,嘗試著用自己的方式去解決問題,勇于發(fā)表自己的觀點.除了演好組織者、引導者的角色外,教師還應爭當伯樂和雷鋒,多給學生以贊許、鼓勵、關愛和幫助,讓他們在積極愉悅的氛圍中努力學習.

