人教八年級上數(shù)學教案(模板15篇)

字號:

    教案的編寫應(yīng)該結(jié)合學校的教學大綱和課程目標,確保教學內(nèi)容的全面覆蓋。教案的編寫需要綜合考慮各個環(huán)節(jié)的安排和時間的分配。教案的編寫需要反復(fù)修改和完善,以確保教學過程的有效進行。
    人教八年級上數(shù)學教案篇一
    教材p144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
    教材p145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。
    人教八年級上數(shù)學教案篇二
    1.使學生理解并能證明勾股定理的逆定理.
    2.能應(yīng)用逆定理判斷一個三角形是否是直角三角形.
    3.使學生進一步加深性質(zhì)定理與判定定理之間關(guān)系的認識.
    4.使學生初步了解,用代數(shù)計算方法證明幾何問題這一數(shù)學思想方法對開闊思路,提高能力有很大意義.
    人教八年級上數(shù)學教案篇三
    人數(shù)1124225。
    每人創(chuàng)得利潤2052.521.51.51.2。
    該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元?
    年齡頻數(shù)。
    28≤x。
    30≤x。
    32≤x。
    34≤x。
    36≤x。
    38≤x。
    40≤x。
    3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。
    答案:1.約2.95萬元2.約29歲3.60.54分貝。
    人教八年級上數(shù)學教案篇四
    采用教材原有的引入問題,設(shè)計的幾個問題如下:
    (1)、請同學讀p140探究問題,依據(jù)統(tǒng)計表可以讀出哪些信息。
    (2)、這里的組中值指什么,它是怎樣確定的?
    (3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?
    (4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。
    人教八年級上數(shù)學教案篇五
    一、教學目標:理解分式乘方的運算法則,熟練地進行分式乘方的運算。
    二、重點、難點。
    1、重點:熟練地進行分式乘方的運算。
    2、難點:熟練地進行分式乘、除、乘方的混合運算。
    3、認知難點與突破方法。
    順其自然地推導可得:
    ===,即=。(n為正整數(shù))。
    歸納出分式乘方的法則:分式乘方要把分子、分母分別乘方。
    三、例、習題的意圖分析。
    1、p17例5第(1)題是分式的乘方運算,它與整式的乘方一樣應(yīng)先判。
    斷乘方的結(jié)果的符號,在分別把分子、分母乘方。第(2)題是分式的乘除與乘方的混合運算,應(yīng)對學生強調(diào)運算順序:先做乘方,再做乘除。.
    2、教材p17例5中象第(1)題這樣的分式的乘方運算只有一題,對于初學者來說,練習的量顯然少了些,故教師應(yīng)作適當?shù)难a充練習。同樣象第(2)題這樣的分式的乘除與乘方的混合運算,也應(yīng)相應(yīng)的增加幾題為好。
    分式的乘除與乘方的混合運算是學生學習中重點,也是難點,故補充例題,強調(diào)運算順序,不要盲目地跳步計算,提高正確率,突破這個難點。
    四、課堂引入。
    計算下列各題:
    (1)==()(2)==()。
    (3)==()。
    [提問]由以上計算的結(jié)果你能推出(n為正整數(shù))的結(jié)果嗎?
    五、例題講解。
    (p17)例5.計算。
    [分析]第(1)題是分式的乘方運算,它與整式的乘方一樣應(yīng)先判斷乘方的結(jié)果的符號,再分別把分子、分母乘方。第(2)題是分式的乘除與乘方的混合運算,應(yīng)對學生強調(diào)運算順序:先做乘方,再做乘除。
    六、隨堂練習。
    1、判斷下列各式是否成立,并改正。
    (1)=(2)=。
    (3)=(4)=。
    2、計算。
    (1)(2)(3)。
    (4)5)。
    (6)。
    七、課后練習。
    計算。
    (1)(2)。
    (3)(4)。
    八、答案:
    六、1.(1)不成立,=(2)不成立,=。
    (3)不成立,=(4)不成立,=。
    2、(1)(2)(3)(4)。
    (5)(6)。
    七、(1)(2)(3)(4)。
    人教八年級上數(shù)學教案篇六
    1、教材p140探究欄目的意圖。
    (1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。
    (2)、加深了對“權(quán)”意義的理解:當利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
    這個探究欄目也可以幫助學生去回憶、復(fù)習七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
    2、教材p140的思考的意圖。
    (2)、幫助學生理解表中所表達出來的信息,培養(yǎng)學生分析數(shù)據(jù)的能力。
    3、p141利用計算器計算平均值。
    這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。
    人教八年級上數(shù)學教案篇七
    1、理解分式的基本性質(zhì)。
    2、會用分式的基本性質(zhì)將分式變形。
    二、重點、難點。
    1、重點:理解分式的基本性質(zhì)。
    2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。
    3、認知難點與突破方法。
    教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
    三、例、習題的意圖分析。
    1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
    2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
    教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。
    3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
    “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5.
    四、課堂引入。
    1、請同學們考慮:與相等嗎?與相等嗎?為什么?
    2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
    3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。
    五、例題講解。
    p7例2.填空:
    [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
    p11例3.約分:
    [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。
    p11例4.通分:
    [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
    (補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號。
    [分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變。
    解:=,=,=,=,=。
    六、隨堂練習。
    1、填空:
    (1)=(2)=。
    (3)=(4)=。
    2、約分:
    (1)(2)(3)(4)。
    3、通分:
    (1)和(2)和。
    (3)和(4)和。
    4、不改變分式的值,使下列分式的分子和分母都不含“-”號。
    (1)(2)(3)(4)。
    七、課后練習。
    1、判斷下列約分是否正確:
    (1)=(2)=。
    (3)=0。
    2、通分:
    (1)和(2)和。
    3、不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號。
    (1)(2)。
    八、答案:
    六、1.(1)2x(2)4b(3)bn+n(4)x+y。
    2、(1)(2)(3)(4)-2(x-y)2。
    3、通分:
    (1)=,=。
    (2)=,=。
    (3)==。
    (4)==。
    4、(1)(2)(3)(4)。
    人教八年級上數(shù)學教案篇八
    20。
    30。
    40。
    50。
    (1)、第二組數(shù)據(jù)的組中值是多少?
    (2)、求該班學生平均每天做數(shù)學作業(yè)所用時間。
    2、某班40名學生身高情況如下圖,
    請計算該班學生平均身高。
    答案1.(1).15.(2)28.2.165。
    六
    人教八年級上數(shù)學教案篇九
    1.(跨學科綜合題)若把x克食鹽溶入b克水中,從其中取出m克食鹽溶液,其中含純鹽________.
    2.(數(shù)學與生活)李麗從家到學校的路程為s,無風時她以平均a米/秒的速度騎車,便能按時到達,當風速為b米/秒時,她若頂風按時到校,請用代數(shù)式表示她必須提前_______出發(fā).
    3.(數(shù)學與生產(chǎn))永信瓶蓋廠加工一批瓶蓋,甲組與乙組合作需要a天完成,若甲組單獨完成需要b天,乙組單獨完成需_______天.
    人教八年級上數(shù)學教案篇十
    可化為一元二次方程的分式方程的解法.。
    教學難點:解分式方程,學生不容易理解為什么必須進行檢驗.。
    一、新課引入:
    1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
    2.解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?
    3、產(chǎn)生增根的原因是什么?.。
    二、新課講解:
    人教八年級上數(shù)學教案篇十一
    教學目標:
    1、知道一次函數(shù)與正比例函數(shù)的意義.
    2、能寫出實際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.
    3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應(yīng)用性.
    4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的能力.
    教學重點:對于一次函數(shù)與正比例函數(shù)概念的理解.
    教學難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
    教學方法:結(jié)構(gòu)教學法、以學生“再創(chuàng)造”為主的教學方法。
    教學過程:
    1、復(fù)習舊課。
    前面我們學習了函數(shù)的相關(guān)知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學生說出前三。
    2、引入新課。
    就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)。
    這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內(nèi)用紅字強調(diào))那么y叫做x的一次函數(shù).特別地,當b=0時,一次函數(shù)就成為(是常數(shù),)。
    3、例題講解。
    例1、某油管因地震破裂,導致每分鐘漏出原油30公升。
    (1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。
    (2)破裂3.5小時后,共漏出原油多少公升。
    分析:y與x成正比例。
    解:(1)(2)(升)。
    例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。
    (1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關(guān)系式;。
    (2)多長時間以后,小丸子的銀行存款才能買隨身聽?
    分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。
    例3、已知函數(shù)是正比例函數(shù),求的值。
    分析:本題考察的是正比例函數(shù)的概念。
    解:
    4、小結(jié)。
    由學生對本節(jié)課知識進行總結(jié),教師板書即可.
    5、布置作業(yè)。
    書面作業(yè):1、書后習題2、自己寫出一個實際中的一次函數(shù)的例子并進行討論。
    人教八年級上數(shù)學教案篇十二
    活動目標:
    1、認知目標:理解二等分的含義,學習二等分的方法。
    2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關(guān)系、等量關(guān)系。
    3、能力目標:探索對不同圖形進行二等分。
    發(fā)散點:
    運用不同的等分線對圖形進行等分。
    活動準備:
    正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
    活動過程:
    (一)等分圖形。
    1、以情景引入。結(jié)合大班幼兒的年齡特點,創(chuàng)設(shè)了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現(xiàn)生活的數(shù)學,更加易于幼兒的理解。
    (1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐?!?BR>    (2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現(xiàn)只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
    (3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
    (4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
    (5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的。”教師:“那我們就用正方形的紙來代替面包片幫平平姐姐來分成兩塊一樣大的!”
    2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
    3、小結(jié):
    (1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
    (2)師:“有幾種分的方法”(對角和對邊折)。
    (3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
    (4)師:“怎樣分才能一樣大呢?”
    (5)教師于幼兒共同總結(jié):只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關(guān)鍵要點。
    (二)運用學具進一步探索。只用紙來等分,以現(xiàn)階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎(chǔ)上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。
    1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
    2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗?zāi)軌蜃C明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進行比較證明。除此方法還可以比較等分線兩側(cè)的洞洞子每排數(shù)量是否相同等方法。
    3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。
    4、小結(jié):展示幼兒作業(yè)單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結(jié)合大班幼兒集體學習的特點,鼓勵幼兒創(chuàng)新。
    人教八年級上數(shù)學教案篇十三
    1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
    2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應(yīng)用意識。
    3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應(yīng)用價值.
    將實際問題中的等量 關(guān)系用分式方程表示
    找實際問題中的等量關(guān)系
    有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
    如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
    根據(jù)題意,可得方程___________________
    從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
    這 一問題中有哪些等量關(guān)系?
    如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
    根據(jù)題意,可得方程_ _____________________。
    學生分組探討、交流,列出方程.
    上面所得到的方程有什么共同特點?
    分母中含有未知數(shù)的方程叫做分式方程
    分式方程與整式方程有什么區(qū)別?
    (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
    本節(jié)課你學到了哪些知識?有什么感想?
    人教八年級上數(shù)學教案篇十四
    1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
    2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。
    平行四邊形的判定方法及應(yīng)用。
    閱讀教材p44至p45。
    利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
    (1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
    (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
    (3)你能說出你的做法及其道理嗎?
    (5)你還能找出其他方法嗎?
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    證明:(畫出圖形)。
    平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
    人教八年級上數(shù)學教案篇十五
    1.理解分式的基本性質(zhì).
    2.會用分式的基本性質(zhì)將分式變形.
    二、重點、難點。
    1.重點:理解分式的基本性質(zhì).
    2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.
    3.認知難點與突破方法。
    教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
    三、例、習題的意圖分析。
    1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
    2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
    教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。
    3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
    “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
    四、課堂引入。
    1.請同學們考慮:與相等嗎?與相等嗎?為什么?
    2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
    3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì).
    五、例題講解。
    p7例2.填空:
    [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
    p11例3.約分:
    [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式.
    p11例4.通分:
    [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
    (補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.
    [分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.
    解:=,=,=,=,=。
    六、隨堂練習。
    1.填空:
    (1)=(2)=。
    (3)=(4)=。
    2.約分:
    3.通分:
    (1)和(2)和。
    (3)和(4)和。
    4.不改變分式的值,使下列分式的分子和分母都不含“-”號.
    七、課后練習。
    1.判斷下列約分是否正確:
    (1)=(2)=。
    (3)=0。
    2.通分:
    (1)和(2)和。
    3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.
    八、答案:
    六、1.(1)2x(2)4b(3)bn+n(4)x+y。
    2.(1)(2)(3)(4)-2(x-y)2。
    3.通分:
    (1)=,=。
    (2)=,=。
    (3)==。
    (4)==。