教案是教師為指導(dǎo)教學(xué)活動所編寫的一種教學(xué)設(shè)計(jì)綱要,它包含了教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)過程等內(nèi)容。教案的編寫是為了指導(dǎo)和規(guī)范教學(xué)活動,使教學(xué)更加系統(tǒng)和科學(xué),提高教學(xué)效果。教案可以幫助教師更好地組織教學(xué)內(nèi)容,調(diào)動學(xué)生的學(xué)習(xí)積極性,提高學(xué)生的學(xué)習(xí)效果。因此,編寫一份好的教案對教師教學(xué)的質(zhì)量至關(guān)重要。教案應(yīng)合理安排教學(xué)步驟,使學(xué)生在逐步積累的基礎(chǔ)上逐漸提高。在教案的編寫過程中,可以通過使用一些案例和教學(xué)資源來豐富教學(xué)內(nèi)容。
新高一數(shù)學(xué)必修一第二章教案篇一
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式。
會從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
新高一數(shù)學(xué)必修一第二章教案篇二
三、在細(xì)胞質(zhì)中,除了細(xì)胞器外,還有呈膠質(zhì)狀態(tài)的細(xì)胞質(zhì)基質(zhì)。
細(xì)胞質(zhì):包括細(xì)胞器和細(xì)胞質(zhì)基質(zhì)。
四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。
光鏡能看到:細(xì)胞質(zhì),線粒體,葉綠體,液泡,細(xì)胞壁。
實(shí)驗(yàn):用高倍顯微鏡觀察葉綠體和線粒體。
健那綠染液是將活細(xì)胞中線粒體染色的專一性染料,可以使活細(xì)胞中的線粒體呈現(xiàn)藍(lán)綠色。
材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
菠菜葉稍帶葉肉的下表皮(上表皮起保護(hù)作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細(xì)胞,有葉綠體)。
五、分泌蛋白的合成和運(yùn)輸。
有些蛋白質(zhì)是在細(xì)胞內(nèi)合成后,分泌到細(xì)胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
核糖體內(nèi)質(zhì)網(wǎng)高爾基體細(xì)胞膜。
(合成肽鏈)(加工成蛋白質(zhì))(進(jìn)一步加工)(囊泡與細(xì)胞膜融合,蛋白質(zhì)釋放)。
分泌蛋白從合成至分泌到細(xì)胞外利用到的細(xì)胞器?
答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。
分泌蛋白從合成至分泌到細(xì)胞外利用到的結(jié)構(gòu)?
核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細(xì)胞核、囊泡、細(xì)胞膜。
六、生物膜系統(tǒng)。
1、概念:細(xì)胞膜、核膜,各種細(xì)胞器的膜共同組成的生物膜系統(tǒng)。
2、作用:使細(xì)胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運(yùn)輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點(diǎn),是許多生化反應(yīng)的場所;把各種細(xì)胞器分隔開,保證生命活動高效、有序進(jìn)行。
3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細(xì)胞膜還和線粒體膜直接相連。
經(jīng)過囊泡與高爾基體膜間接相連。
新高一數(shù)學(xué)必修一第二章教案篇三
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
新高一數(shù)學(xué)必修一第二章教案篇四
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.
教學(xué)重點(diǎn)是通項(xiàng)公式的熟悉;教學(xué)難點(diǎn)是對公式的靈活運(yùn)用.
實(shí)物投影儀,多媒體軟件,電腦.
研探式.
一.復(fù)習(xí)提問
等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.
二.主體設(shè)計(jì)
通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運(yùn)用
(1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第x項(xiàng).
(2)已知等差數(shù)列中,首項(xiàng),則公差
(3)已知等差數(shù)列中,公差,則首項(xiàng)
這一類問題先由學(xué)生解決,之后教師點(diǎn)評,四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項(xiàng)公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的`制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
類似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項(xiàng)進(jìn)行定量的研究,有無定性的判定?引出
3.研究等差數(shù)列的單調(diào)性
4.研究項(xiàng)的符號
這是為研究等差數(shù)列前項(xiàng)和的最值所做的預(yù)備工作.可配備的題目如
(1)已知數(shù)列的通項(xiàng)公式為,問數(shù)列從第幾項(xiàng)開始小于0?
(2)等差數(shù)列從第x項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).
三.小結(jié)
1.用方程思想熟悉等差數(shù)列通項(xiàng)公式;
2.用函數(shù)思想解決等差數(shù)列問題.
四.板書設(shè)計(jì)
等差數(shù)列通項(xiàng)公式1.方程思想的運(yùn)用
2.基本量方法的使用
3.研究等差數(shù)列的單調(diào)性
4.研究項(xiàng)的符號
新高一數(shù)學(xué)必修一第二章教案篇五
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計(jì)理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)。
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
新高一數(shù)學(xué)必修一第二章教案篇六
(1)理解函數(shù)的概念;
(2)了解區(qū)間的概念;
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個(gè)臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
新高一數(shù)學(xué)必修一第二章教案篇七
一、除了高等植物成熟的篩管細(xì)胞和哺乳動物成熟的紅細(xì)胞等極少數(shù)細(xì)胞外,真核細(xì)胞都有細(xì)胞核。植物的導(dǎo)管細(xì)胞是死細(xì)胞(主要運(yùn)輸水分、無機(jī)鹽),篩管主要運(yùn)輸有機(jī)物。
二、細(xì)胞核控制著細(xì)胞的代謝和遺傳。
三、細(xì)胞核的結(jié)構(gòu)。
2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。
4.核孔(實(shí)現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細(xì)胞需要能量和載體,細(xì)胞代謝越旺盛,核孔越多,核仁體積越大。
四、細(xì)胞分裂時(shí),細(xì)胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學(xué)顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結(jié)束時(shí),染色體解螺旋,重新成為細(xì)絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時(shí))是同樣的物質(zhì)在細(xì)胞不同時(shí)期的兩種存在狀態(tài)。
五、細(xì)胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。
新高一數(shù)學(xué)必修一第二章教案篇八
(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價(jià)值觀。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀。
四、教學(xué)思路。
(一)創(chuàng)設(shè)情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時(shí)給予評價(jià)。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知。
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3.課本p8,習(xí)題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習(xí):課本p7練習(xí)1、2(1)(2)。
課本p8習(xí)題1.1第2、3、4題。
五、歸納整理。
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。
六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
1.2.1空間幾何體的三視圖(1課時(shí))。
新高一數(shù)學(xué)必修一第二章教案篇九
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
新高一數(shù)學(xué)必修一第二章教案篇十
教學(xué)目標(biāo)。
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點(diǎn)。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程。
復(fù)習(xí)。
兩角差的余弦公式。
用-b代替b看看有什么結(jié)果?
新高一數(shù)學(xué)必修一第二章教案篇十一
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點(diǎn)難點(diǎn)分析。
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒有意識到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。
(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時(shí),就比較輕易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
新高一數(shù)學(xué)必修一第二章教案篇十二
1.要讀好課本。
有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強(qiáng)自己從課本入手進(jìn)行研究的意識。
2.要記好筆記。
首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時(shí)候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。
3.要做好作業(yè)。
在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨(dú)立完成。同時(shí)可以培養(yǎng)一種獨(dú)立思考和解題正確的責(zé)任感。在作業(yè)時(shí)要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時(shí)完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。
4.要寫好總結(jié)。
一個(gè)人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高?!安粫偨Y(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗(yàn)是成功的基石。”自然界適者生存的生物進(jìn)化過程便是最好的例證。學(xué)習(xí)要經(jīng)常總結(jié)規(guī)律,目的就是為了更一步的發(fā)展。
通過與老師、同學(xué)平時(shí)的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面,簡單概括為四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個(gè)步驟(復(fù)習(xí)總結(jié))。每一個(gè)環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強(qiáng)的目的性、針對性,要落實(shí)到位。堅(jiān)持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個(gè)單元的總結(jié))的學(xué)習(xí)習(xí)慣。
1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時(shí)候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實(shí)即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時(shí)候講比自己看更好。
小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。
3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時(shí)復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時(shí)間,及時(shí)對所學(xué)進(jìn)行鞏固。
4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個(gè)并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。
5.錯(cuò)題反復(fù)研究。自己準(zhǔn)備一個(gè)錯(cuò)題本,把考試時(shí)候做錯(cuò)的題目記錄下來,寫上做錯(cuò)的原因,反復(fù)研究,避免再次出錯(cuò)。
新高一數(shù)學(xué)必修一第二章教案篇十三
2.會進(jìn)行簡單的二次根式的除法運(yùn)算;。
4.培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡與計(jì)算的能力;。
6.通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.
二、教學(xué)重點(diǎn)和難點(diǎn)。
1.重點(diǎn):會利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡,會進(jìn)行簡單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.
2.難點(diǎn):二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法。
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)。
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.
新高一數(shù)學(xué)必修一第二章教案篇十四
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式。
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項(xiàng)。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。
(5)對每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。
新高一數(shù)學(xué)必修一第二章教案篇一
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式。
會從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
新高一數(shù)學(xué)必修一第二章教案篇二
三、在細(xì)胞質(zhì)中,除了細(xì)胞器外,還有呈膠質(zhì)狀態(tài)的細(xì)胞質(zhì)基質(zhì)。
細(xì)胞質(zhì):包括細(xì)胞器和細(xì)胞質(zhì)基質(zhì)。
四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。
光鏡能看到:細(xì)胞質(zhì),線粒體,葉綠體,液泡,細(xì)胞壁。
實(shí)驗(yàn):用高倍顯微鏡觀察葉綠體和線粒體。
健那綠染液是將活細(xì)胞中線粒體染色的專一性染料,可以使活細(xì)胞中的線粒體呈現(xiàn)藍(lán)綠色。
材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
菠菜葉稍帶葉肉的下表皮(上表皮起保護(hù)作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細(xì)胞,有葉綠體)。
五、分泌蛋白的合成和運(yùn)輸。
有些蛋白質(zhì)是在細(xì)胞內(nèi)合成后,分泌到細(xì)胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
核糖體內(nèi)質(zhì)網(wǎng)高爾基體細(xì)胞膜。
(合成肽鏈)(加工成蛋白質(zhì))(進(jìn)一步加工)(囊泡與細(xì)胞膜融合,蛋白質(zhì)釋放)。
分泌蛋白從合成至分泌到細(xì)胞外利用到的細(xì)胞器?
答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。
分泌蛋白從合成至分泌到細(xì)胞外利用到的結(jié)構(gòu)?
核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細(xì)胞核、囊泡、細(xì)胞膜。
六、生物膜系統(tǒng)。
1、概念:細(xì)胞膜、核膜,各種細(xì)胞器的膜共同組成的生物膜系統(tǒng)。
2、作用:使細(xì)胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運(yùn)輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點(diǎn),是許多生化反應(yīng)的場所;把各種細(xì)胞器分隔開,保證生命活動高效、有序進(jìn)行。
3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細(xì)胞膜還和線粒體膜直接相連。
經(jīng)過囊泡與高爾基體膜間接相連。
新高一數(shù)學(xué)必修一第二章教案篇三
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
新高一數(shù)學(xué)必修一第二章教案篇四
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.
教學(xué)重點(diǎn)是通項(xiàng)公式的熟悉;教學(xué)難點(diǎn)是對公式的靈活運(yùn)用.
實(shí)物投影儀,多媒體軟件,電腦.
研探式.
一.復(fù)習(xí)提問
等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.
二.主體設(shè)計(jì)
通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運(yùn)用
(1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第x項(xiàng).
(2)已知等差數(shù)列中,首項(xiàng),則公差
(3)已知等差數(shù)列中,公差,則首項(xiàng)
這一類問題先由學(xué)生解決,之后教師點(diǎn)評,四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項(xiàng)公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的`制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
類似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項(xiàng)進(jìn)行定量的研究,有無定性的判定?引出
3.研究等差數(shù)列的單調(diào)性
4.研究項(xiàng)的符號
這是為研究等差數(shù)列前項(xiàng)和的最值所做的預(yù)備工作.可配備的題目如
(1)已知數(shù)列的通項(xiàng)公式為,問數(shù)列從第幾項(xiàng)開始小于0?
(2)等差數(shù)列從第x項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).
三.小結(jié)
1.用方程思想熟悉等差數(shù)列通項(xiàng)公式;
2.用函數(shù)思想解決等差數(shù)列問題.
四.板書設(shè)計(jì)
等差數(shù)列通項(xiàng)公式1.方程思想的運(yùn)用
2.基本量方法的使用
3.研究等差數(shù)列的單調(diào)性
4.研究項(xiàng)的符號
新高一數(shù)學(xué)必修一第二章教案篇五
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計(jì)理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)。
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
新高一數(shù)學(xué)必修一第二章教案篇六
(1)理解函數(shù)的概念;
(2)了解區(qū)間的概念;
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個(gè)臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
新高一數(shù)學(xué)必修一第二章教案篇七
一、除了高等植物成熟的篩管細(xì)胞和哺乳動物成熟的紅細(xì)胞等極少數(shù)細(xì)胞外,真核細(xì)胞都有細(xì)胞核。植物的導(dǎo)管細(xì)胞是死細(xì)胞(主要運(yùn)輸水分、無機(jī)鹽),篩管主要運(yùn)輸有機(jī)物。
二、細(xì)胞核控制著細(xì)胞的代謝和遺傳。
三、細(xì)胞核的結(jié)構(gòu)。
2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。
4.核孔(實(shí)現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細(xì)胞需要能量和載體,細(xì)胞代謝越旺盛,核孔越多,核仁體積越大。
四、細(xì)胞分裂時(shí),細(xì)胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學(xué)顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結(jié)束時(shí),染色體解螺旋,重新成為細(xì)絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時(shí))是同樣的物質(zhì)在細(xì)胞不同時(shí)期的兩種存在狀態(tài)。
五、細(xì)胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。
新高一數(shù)學(xué)必修一第二章教案篇八
(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價(jià)值觀。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀。
四、教學(xué)思路。
(一)創(chuàng)設(shè)情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時(shí)給予評價(jià)。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知。
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3.課本p8,習(xí)題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習(xí):課本p7練習(xí)1、2(1)(2)。
課本p8習(xí)題1.1第2、3、4題。
五、歸納整理。
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。
六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
1.2.1空間幾何體的三視圖(1課時(shí))。
新高一數(shù)學(xué)必修一第二章教案篇九
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
新高一數(shù)學(xué)必修一第二章教案篇十
教學(xué)目標(biāo)。
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點(diǎn)。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程。
復(fù)習(xí)。
兩角差的余弦公式。
用-b代替b看看有什么結(jié)果?
新高一數(shù)學(xué)必修一第二章教案篇十一
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點(diǎn)難點(diǎn)分析。
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒有意識到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。
(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時(shí),就比較輕易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
新高一數(shù)學(xué)必修一第二章教案篇十二
1.要讀好課本。
有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強(qiáng)自己從課本入手進(jìn)行研究的意識。
2.要記好筆記。
首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時(shí)候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。
3.要做好作業(yè)。
在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨(dú)立完成。同時(shí)可以培養(yǎng)一種獨(dú)立思考和解題正確的責(zé)任感。在作業(yè)時(shí)要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時(shí)完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。
4.要寫好總結(jié)。
一個(gè)人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高?!安粫偨Y(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗(yàn)是成功的基石。”自然界適者生存的生物進(jìn)化過程便是最好的例證。學(xué)習(xí)要經(jīng)常總結(jié)規(guī)律,目的就是為了更一步的發(fā)展。
通過與老師、同學(xué)平時(shí)的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面,簡單概括為四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個(gè)步驟(復(fù)習(xí)總結(jié))。每一個(gè)環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強(qiáng)的目的性、針對性,要落實(shí)到位。堅(jiān)持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個(gè)單元的總結(jié))的學(xué)習(xí)習(xí)慣。
1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時(shí)候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實(shí)即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時(shí)候講比自己看更好。
小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。
3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時(shí)復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時(shí)間,及時(shí)對所學(xué)進(jìn)行鞏固。
4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個(gè)并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。
5.錯(cuò)題反復(fù)研究。自己準(zhǔn)備一個(gè)錯(cuò)題本,把考試時(shí)候做錯(cuò)的題目記錄下來,寫上做錯(cuò)的原因,反復(fù)研究,避免再次出錯(cuò)。
新高一數(shù)學(xué)必修一第二章教案篇十三
2.會進(jìn)行簡單的二次根式的除法運(yùn)算;。
4.培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡與計(jì)算的能力;。
6.通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.
二、教學(xué)重點(diǎn)和難點(diǎn)。
1.重點(diǎn):會利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡,會進(jìn)行簡單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.
2.難點(diǎn):二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法。
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)。
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.
新高一數(shù)學(xué)必修一第二章教案篇十四
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式。
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項(xiàng)。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。
(5)對每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。

