八年級數(shù)學(xué)教案全套(實(shí)用16篇)

字號:

    教案是教學(xué)活動的設(shè)計和組織方案,是教師進(jìn)行教學(xué)過程管理的重要工具。編寫教案時需要關(guān)注學(xué)生的學(xué)習(xí)過程,鼓勵學(xué)生的思考、合作和創(chuàng)新能力的培養(yǎng)。請大家積極參與,共同分享自己的教案心得和經(jīng)驗。
    八年級數(shù)學(xué)教案全套篇一
    教學(xué)目標(biāo):
    〔知識與技能〕。
    1.在生活實(shí)例中認(rèn)識軸對稱圖.
    2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。
    〔過程與方法〕。
    2、在靈活運(yùn)用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。
    〔情感、態(tài)度與價值觀〕。
    辯證唯物主義觀點(diǎn)。
    教學(xué)重點(diǎn):.
    理解軸對稱的概念。
    教學(xué)難點(diǎn)。
    能夠識別軸對稱圖形并找出它的對稱軸.
    教具準(zhǔn)備:三角尺。
    教學(xué)過程。
    一.創(chuàng)設(shè)情境,引入新課。
    1.舉實(shí)例說明對稱的重要性和生活充滿著對稱。
    2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.
    3.軸對稱是對稱中重要的一種,讓我們一起走進(jìn)軸對稱世界,探索它的秘密吧!
    二.導(dǎo)入新課。
    1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.
    強(qiáng)調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對稱的例子.
    練習(xí):從學(xué)生生活周圍的事物中來找一些具有對稱特征的例子.
    3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關(guān)于這條直線(成軸)?對稱.
    4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。
    刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?
    歸納小結(jié):由此我們進(jìn)一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.
    5.練習(xí):你能找出它們的對稱軸嗎?分小組討論.
    思考:大家想一想,你發(fā)現(xiàn)了什么?
    小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn).
    三.隨堂練習(xí)。
    1、課本60練習(xí)1、2。
    四.課時小結(jié)。
    分了軸對稱圖形和兩個圖形成軸對稱.
    五.課后作業(yè)。
    習(xí)題13.1.1、2、6題.
    六.教后記。
    八年級數(shù)學(xué)教案全套篇二
    教學(xué)。
    目標(biāo)(含重點(diǎn)、難點(diǎn))及。
    設(shè)置依據(jù)教學(xué)目標(biāo)。
    1、了解多面體、直棱柱的有關(guān)概念.2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.。
    3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。
    教學(xué)重點(diǎn)與難點(diǎn)。
    教學(xué)過程。
    內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。
    一、創(chuàng)設(shè)情景,引入新課。
    析:學(xué)生很容易回答出更多的答案。
    師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    二、合作交流,探求新知。
    1.多面體、棱、頂點(diǎn)概念:
    2.合作交流。
    師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
    學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
    學(xué)生活動:分小組討論。
    說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
    師:請大家找出與長方體,立方體類似的物體或模型。
    析:舉出實(shí)例。(找出區(qū)別)。
    師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    長方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的相鄰兩條側(cè)棱互相平行且相等。
    4.學(xué)以至用。
    出示例題。(先請學(xué)生單獨(dú)考慮,再作講解)。
    析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(xí)(學(xué)生練習(xí))。
    完成“課內(nèi)練習(xí)”
    三、小結(jié)回顧,反思提高。
    師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?
    合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。
    直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。
    板書設(shè)計。
    作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)。
    八年級數(shù)學(xué)教案全套篇三
    1.了解方差的定義和計算公式。
    2.理解方差概念的產(chǎn)生和形成的過程。
    3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
    1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
    2.難點(diǎn):理解方差公式。
    3.難點(diǎn)的突破方法:
    方差公式:s=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點(diǎn),我安排了幾個環(huán)節(jié),將難點(diǎn)化解。
    (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運(yùn)動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
    (2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法??梢援嬚劬€圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
    (3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
    1.教材p125的討論問題的意圖:
    (1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
    (2).為引入方差概念和方差計算公式作鋪墊。
    (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
    (4).客觀上反映了在解決某些實(shí)際問題時,求平均數(shù)或求極差等方法的'局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。
    2.教材p154例1的設(shè)計意圖:
    (1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。
    (2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
    除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
    教材xxx例x在分析過程中應(yīng)抓住以下幾點(diǎn):
    1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
    2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。
    3.方差怎樣去體現(xiàn)波動大???
    這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
    1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)。
    甲:9、10、11、12、7、13、10、8、12、8;。
    乙:8、13、12、11、10、12、7、7、9、11;。
    問:(1)哪種農(nóng)作物的苗長的比較高?
    (2)哪種農(nóng)作物的苗長得比較整齊?
    測試次數(shù)12345。
    段巍1314131213。
    金志強(qiáng)1013161412。
    參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊。
    的成績比xx的成績要穩(wěn)定。
    略。
    八年級數(shù)學(xué)教案全套篇四
    1.了解方差的定義和計算公式。
    2.理解方差概念的產(chǎn)生和形成的過程。
    3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
    1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
    2.難點(diǎn):理解方差公式。
    問題農(nóng)科院計劃為某地選擇合適的甜玉米種子.選擇種子時,甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關(guān)心的問題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗田進(jìn)行試驗,得到各試驗田每公頃的產(chǎn)量(單位:t)如表所示。
    根據(jù)這些數(shù)據(jù)估計,農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
    來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
    意義:用來衡量一批數(shù)據(jù)的波動大小。
    在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定。
    (1)研究離散程度可用。
    (2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的.波動大小。
    (3)方差主要應(yīng)用在平均數(shù)相等或接近時。
    (4)方差大波動大,方差小波動小,一般選波動小的。
    例題:在一次芭蕾舞比賽中,甲乙兩個芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
    甲163164164165165166166167。
    乙163165165166166167168168。
    哪個芭蕾舞團(tuán)的女演員的身高比較整齊?
    1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
    2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
    甲:7、8、6、8、6、5、9、10、7、4。
    乙:9、5、7、8、7、6、8、6、7、7。
    經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但s,所以確定去參加比賽。
    3.甲、乙兩臺機(jī)床生產(chǎn)同種零件,10天出的次品分別是()。
    甲:0、1、0、2、2、0、3、1、2、4。
    乙:2、3、1、2、0、2、1、1、2、1。
    分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機(jī)床的性能較好?
    八年級數(shù)學(xué)教案全套篇五
    在推理判斷中得出同底數(shù)冪乘法的運(yùn)算法則,并掌握“法則”的應(yīng)用.2.過程與方法。
    在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強(qiáng)學(xué)習(xí)信心.重、難點(diǎn)與關(guān)鍵。
    1.重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.2.難點(diǎn):同底數(shù)冪的乘法的法則的應(yīng)用.
    一、創(chuàng)設(shè)情境,故事引入【情境導(dǎo)入】。
    力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個壯舉,累死了,他的左眼變成了太陽,右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.
    八年級數(shù)學(xué)教案全套篇六
    一、教材分析:
    《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。
    (一)知識目標(biāo):
    1、要求學(xué)生掌握正方形的概念及性質(zhì);
    2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡單的計算、推理、論證;
    (二)能力目標(biāo):
    1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;
    2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;
    (三)情感目標(biāo):
    1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
    2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
    二、學(xué)生分析:
    該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
    三、教法分析:
    針對本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
    通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
    四、學(xué)法分析:
    本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。
    五、教學(xué)程序:
    第一環(huán)節(jié):相關(guān)知識回顧。
    以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
    第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
    1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
    2、正方形的性質(zhì)。
    定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
    4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
    第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。
    5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實(shí)自己,達(dá)到理想中的完美。
    6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。
    八年級數(shù)學(xué)教案全套篇七
    教學(xué)目標(biāo):
    〔知識與技能〕。
    1.探索作出軸對稱圖形的對稱軸的方法.掌握軸對稱圖形對稱軸的作法.
    2.在探索的過程中,培養(yǎng)學(xué)生分析、歸納的能力.
    〔過程與方法〕。
    2、在靈活運(yùn)用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。
    〔情感、態(tài)度與價值觀〕。
    1、體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會應(yīng)用數(shù)學(xué)知識解決一些簡單的實(shí)際問題,增強(qiáng)應(yīng)用意識。
    教學(xué)重點(diǎn):
    軸對稱圖形對稱軸的作法.
    教學(xué)難點(diǎn):
    探索軸對稱圖形對稱軸的作法.
    教具準(zhǔn)備:圓規(guī)、三角尺。
    教學(xué)過程。
    一.提出問題,引入新課。
    2.軸對稱圖形性質(zhì).如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對稱點(diǎn)所連線段的垂直平分線.軸對稱圖形的對稱軸,是任何一對對稱點(diǎn)所連線段的垂直平分線.
    3.找到一對對應(yīng)點(diǎn),作出連結(jié)它們的線段的垂直平分線,就可以得到這兩個圖形的對稱軸了.
    4.問題:如何作出線段的垂直平分線?
    二.導(dǎo)入新課。
    1.要作出線段的垂直平分線,根據(jù)垂直平分線的判定定理,到線段兩端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上,又由兩點(diǎn)確定一條直線這個公理,那么必須找到兩個到線段兩端點(diǎn)距離相等的點(diǎn),這樣才能確定已知線段的垂直平分線.
    [例]如圖(1),點(diǎn)a和點(diǎn)b關(guān)于某條直線成軸對稱,你能作出這條直線嗎?
    已知:線段ab[如圖(1)].
    求作:線段ab的垂直平分線.
    作法:如圖(2)。
    (1).分別以點(diǎn)a、b為圓心,以大于。
    (2).作直線cd.
    直線cd就是線段ab的垂直平分線.
    2.[例]圖中的五角星有幾條對稱軸?作出這些對稱軸.
    作法:
    1.找出五角星的一對對應(yīng)點(diǎn)a和a′,
    連結(jié)aa′.
    2.作出線段aa′的垂直平分線l.
    則l就是這個五角星的一條對稱軸.
    用同樣的方法,可以找出五條對稱軸,所以五角星有五條對稱軸.
    三.隨堂練習(xí)。
    (一)課本35練習(xí)1、2、3。
    如圖,與圖形a成軸對稱的是哪個圖形?畫出它們的對稱軸.
    1ab的長為半徑作弧,兩弧相交于c和d兩點(diǎn);2。
    答案:與a成軸對稱的是圖形d(或b).
    四.課時小結(jié)。
    方法:找出軸對稱圖形的任意一對對應(yīng)點(diǎn),連結(jié)這對對應(yīng)點(diǎn),?作出連線的垂直平分線,該垂直平分線就是這個軸對稱圖形的一條對稱軸.
    五.課后作業(yè)。
    八年級數(shù)學(xué)教案全套篇八
    多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。
    二、自主學(xué)習(xí),指向目標(biāo)。
    學(xué)習(xí)至此:請完成《學(xué)生用書》相應(yīng)部分。
    三、合作探究,達(dá)成目標(biāo)。
    多邊形的定義及有關(guān)概念。
    活動一:閱讀教材p19。
    小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?
    反思小結(jié):多邊形的定義及相關(guān)概念。
    針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
    多邊形的對角線。
    活動二:(1)十邊形的對角線有35條。
    (2)如果經(jīng)過多邊形的一個頂點(diǎn)有36條對角線,這個多邊形是39邊形。
    反思小結(jié):當(dāng)n為已知時,可以直接代入求得對角線的條數(shù),當(dāng)對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。
    小組討論:如何靈活運(yùn)用多邊形對角線條數(shù)的規(guī)律解題?
    針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
    正多邊形的有關(guān)概念。
    活動二:閱讀教材p20。
    小組討論:判斷一個多邊形是否是正多邊形的條件?
    反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
    針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
    四、總結(jié)梳理,內(nèi)化目標(biāo)。
    本節(jié)學(xué)習(xí)的數(shù)學(xué)知識是:
    1、多邊形、多邊形的外角,多邊形的對角線。
    2、凸凹多邊形的概念。
    五、達(dá)標(biāo)檢測,反思目標(biāo)。
    1、下列敘述正確的是(d)。
    a、每條邊都相等的多邊形是正多邊形。
    c、每個角都相等的多邊形叫正多邊形。
    d、每條邊、每個角都相等的多邊形叫正多邊形。
    2、小學(xué)學(xué)過的下列圖形中不可能是正多邊形的是(d)。
    a、三角形b。正方形c。四邊形d。梯形。
    3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補(bǔ)角關(guān)系。
    4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。
    八年級數(shù)學(xué)教案全套篇九
    1.理解分式的基本性質(zhì).
    2.會用分式的基本性質(zhì)將分式變形.
    二、重點(diǎn)、難點(diǎn)。
    1.重點(diǎn):理解分式的基本性質(zhì).
    2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
    3.認(rèn)知難點(diǎn)與突破方法。
    教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
    三、例、習(xí)題的意圖分析。
    1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
    2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
    教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。
    3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
    “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
    四、課堂引入。
    1.請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
    2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
    3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
    五、例題講解。
    p7例2.填空:
    [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
    p11例3.約分:
    [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.
    p11例4.通分:
    [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
    (補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.
    [分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.
    解:=,=,=,=,=。
    六、隨堂練習(xí)。
    1.填空:
    (1)=(2)=。
    (3)=(4)=。
    2.約分:
    3.通分:
    (1)和(2)和。
    (3)和(4)和。
    4.不改變分式的值,使下列分式的分子和分母都不含“-”號.
    七、課后練習(xí)。
    1.判斷下列約分是否正確:
    (1)=(2)=。
    (3)=0。
    2.通分:
    (1)和(2)和。
    3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.
    八、答案:
    六、1.(1)2x(2)4b(3)bn+n(4)x+y。
    2.(1)(2)(3)(4)-2(x-y)2。
    3.通分:
    (1)=,=。
    (2)=,=。
    (3)==。
    (4)==。
    八年級數(shù)學(xué)教案全套篇十
    活動目標(biāo):
    1、認(rèn)知目標(biāo):理解二等分的含義,學(xué)習(xí)二等分的方法。
    2、操作目標(biāo):通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關(guān)系、等量關(guān)系。
    3、能力目標(biāo):探索對不同圖形進(jìn)行二等分。
    發(fā)散點(diǎn):
    運(yùn)用不同的等分線對圖形進(jìn)行等分。
    活動準(zhǔn)備:
    正方形彩色紙片若干、多項操作學(xué)具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
    活動過程:
    (一)等分圖形。
    1、以情景引入。結(jié)合大班幼兒的年齡特點(diǎn),創(chuàng)設(shè)了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現(xiàn)生活的數(shù)學(xué),更加易于幼兒的理解。
    (1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐?!?BR>    (2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點(diǎn),我發(fā)現(xiàn)只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
    (3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
    (4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
    (5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的?!苯處煟骸澳俏覀兙陀谜叫蔚募垇泶婷姘瑤推狡浇憬銇矸殖蓛蓧K一樣大的!”
    2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機(jī)會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
    3、小結(jié):
    (1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
    (2)師:“有幾種分的方法”(對角和對邊折)。
    (3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
    (4)師:“怎樣分才能一樣大呢?”
    (5)教師于幼兒共同總結(jié):只要找到了中心線,就可以將一個分成兩個一樣大的。進(jìn)一步引導(dǎo)幼兒掌握二等分的關(guān)鍵要點(diǎn)。
    (二)運(yùn)用學(xué)具進(jìn)一步探索。只用紙來等分,以現(xiàn)階段幼兒的年齡特點(diǎn)所致,比較精確的二等分方法只有對角和對邊折兩種,運(yùn)用學(xué)具,抓住學(xué)具有洞洞點(diǎn)的特點(diǎn),可以讓幼兒進(jìn)一步嘗試以各種折線為中心線進(jìn)行正方形的二等分,并且能夠保證精確性。促進(jìn)幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎(chǔ)上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨(dú)特性,同時滲透了做一件事情可以有多種方法解決的道理。
    1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
    2、請幼兒運(yùn)用學(xué)具進(jìn)行嘗試,并準(zhǔn)確找到不同形狀的中心線,探索檢驗的方法。檢驗?zāi)軌蜃C明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學(xué)具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進(jìn)行比較證明。除此方法還可以比較等分線兩側(cè)的洞洞子每排數(shù)量是否相同等方法。
    3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進(jìn)行指導(dǎo),并引導(dǎo)幼兒記錄、檢驗。
    4、小結(jié):展示幼兒作業(yè)單,誰來說一說你用了什么方法進(jìn)行了等分,你是怎樣指導(dǎo)它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機(jī)會,并且結(jié)合大班幼兒集體學(xué)習(xí)的特點(diǎn),鼓勵幼兒創(chuàng)新。
    八年級數(shù)學(xué)教案全套篇十一
    1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
    2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
    3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.
    將實(shí)際問題中的等量 關(guān)系用分式方程表示
    找實(shí)際問題中的等量關(guān)系
    有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
    如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
    根據(jù)題意,可得方程___________________
    從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
    這 一問題中有哪些等量關(guān)系?
    如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
    根據(jù)題意,可得方程_ _____________________。
    學(xué)生分組探討、交流,列出方程.
    上面所得到的方程有什么共同特點(diǎn)?
    分母中含有未知數(shù)的方程叫做分式方程
    分式方程與整式方程有什么區(qū)別?
    (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
    本節(jié)課你學(xué)到了哪些知識?有什么感想?
    八年級數(shù)學(xué)教案全套篇十二
    《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。
    (一)知識目標(biāo):
    1、要求學(xué)生掌握正方形的概念及性質(zhì);
    2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡單的計算、推理、論證;
    (二)能力目標(biāo):
    1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;
    2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;
    (三)情感目標(biāo):
    1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
    2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
    該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
    針對本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
    通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
    本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。
    第一環(huán)節(jié):相關(guān)知識回顧。
    以提問的形式復(fù)習(xí)平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
    第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
    1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
    2、正方形的性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
    4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
    第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。
    5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實(shí)自己,達(dá)到理想中的完美。
    6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。
    八年級數(shù)學(xué)教案全套篇十三
    本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
    本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,容易混淆,幫助學(xué)生認(rèn)識定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn).
    本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式.提出問題讓學(xué)生想,設(shè)計問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納.教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人.具體說明如下:
    學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點(diǎn)p,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”.然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié).最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理.這樣讓學(xué)生親自動手實(shí)踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.
    線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識這兩個定理的區(qū)別和聯(lián)系.
    八年級數(shù)學(xué)教案全套篇十四
    正比例函數(shù)的概念。
    2、內(nèi)容解析。
    一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗。
    對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對函數(shù)概念的理解,即實(shí)際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
    本節(jié)課主要是通過對生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進(jìn)行辨析,對實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
    基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。
    1、目標(biāo)。
    (1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
    (2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。
    2、目標(biāo)解析。
    達(dá)成目標(biāo)(1)的標(biāo)志是:通過對實(shí)際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
    達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會函數(shù)建模思想。
    正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對函數(shù)概念的理解:即實(shí)際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的`每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。
    因此本節(jié)課的教學(xué)難點(diǎn)是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程。
    八年級數(shù)學(xué)教案全套篇十五
    調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
    例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
    從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
    例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學(xué)生進(jìn)行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢數(shù),就是總體的一個樣本。
    將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。
    一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
    例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
    解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
    又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
    解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
    所以這組數(shù)據(jù)的眾數(shù)是2和3。
    【規(guī)律方法小結(jié)】。
    (1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。
    (2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。
    (3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。
    (4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。
    探究交流。
    1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?
    解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當(dāng)這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
    總結(jié):
    (1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
    (2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。
    (3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
    (4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。
    課堂檢測。
    基本概念題。
    1、填空題。
    (1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
    (4)為了考察某公園一年中每天進(jìn)園的人數(shù),在其中的30天里,對進(jìn)園的人數(shù)進(jìn)行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。
    基礎(chǔ)知識應(yīng)用題。
    2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機(jī)抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。
    (1)計算這10個班次乘車人數(shù)的平均數(shù);
    (2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。
    八年級數(shù)學(xué)教案全套篇十六
    1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
    2、會求一組數(shù)據(jù)的極差.
    1、重點(diǎn):會求一組數(shù)據(jù)的極差.
    2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn)、
    從表中你能得到哪些信息?
    比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法、
    這是不是說,兩個時段的氣溫情況沒有什么差異呢?
    根據(jù)兩段時間的氣溫情況可繪成的折線圖、
    觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果、
    本節(jié)課在教材中沒有相應(yīng)的例題,教材p152習(xí)題分析。
    問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大、問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識、問題3答案并不唯一,合理即可。